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Abstract

Background: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their
impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when
incoming information is sparse and isolated, to identify effective control measures and guide their implementation.

Objective: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation
of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of
an unfolding outbreak.

Methods: We developed an algorithm to allow the matching of unfolding outbreak data to a representative library of historical
outbreaks. This process provides epidemiological clues that facilitate a user’s understanding of an unfolding outbreak and facilitates
informed decisions about mitigation actions. Disease-specific properties to build a complete picture of the unfolding event were
identified through a data-driven approach. A method of analogs approach was used to develop a short-term forecasting feature
in the analytic. The 4 major steps involved in developing this tool were (1) collection of historic outbreak data and preparation
of the representative library, (2) development of AIDO algorithms, (3) development of user interface and associated visuals, and
(4) verification and validation.

Results: The tool currently includes representative historical outbreaks for 39 infectious diseases with over 600 diverse outbreaks.
We identified 27 different properties categorized into 3 broad domains (population, location, and disease) that were used to
evaluate outbreaks across all diseases for their effect on case count and duration of an outbreak. Statistical analyses revealed
disease-specific properties from this set that were included in the disease-specific similarity algorithm. Although there were some
similarities across diseases, we found that statistically important properties tend to vary, even between similar diseases. This may
be because of our emphasis on including diverse representative outbreak presentations in our libraries. AIDO algorithm evaluations
(similarity algorithm and short-term forecasting) were conducted using 4 case studies and we have shown details for the Q fever
outbreak in Bilbao, Spain (2014), using data from the early stages of the outbreak. Using data from only the initial 2 weeks, AIDO
identified historical outbreaks that were very similar in terms of their epidemiological picture (case count, duration, source of
exposure, and urban setting). The short-term forecasting algorithm accurately predicted case count and duration for the unfolding
outbreak.
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Conclusions: AIDO is a decision support tool that facilitates increased situational awareness during an unfolding outbreak and
enables informed decisions on mitigation strategies. AIDO analytics are available to epidemiologists across the globe with access
to internet, at no cost. In this study, we presented a new approach to applying historical outbreak data to provide actionable
information during the early stages of an unfolding infectious disease outbreak.

(JMIR Public Health Surveill 2019;5(1):e12032) doi: 10.2196/12032
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Introduction

Challenges in Outbreak Investigation
Infectious diseases continue to be a leading cause of mortality
worldwide despite substantial advances in public health [1].
Disease outbreaks are not bound by national borders and can
have far-reaching economic and social impacts. Therefore, early
detection and monitoring are key to curtailing unfolding
outbreaks. Tools and analytics that improve situational
awareness can aid communication in the initial stages of an
outbreak and enable effective decisions for outbreak control
[2].

Traditionally, historical outbreak data have been used to enhance
and develop disease forecasting models. For example, when
modeling influenza, Viboud et al utilized the method of analogs,
which uses weighted vectors of historical time series data that
match current activity to build forecasts 1 to 10 weeks ahead
[3]. Relatedly, Sugihara and May utilized a library of historical
measles and chickenpox outbreaks to understand historical
patterns in variation and develop short-term forecasting models
[4]. In addition, extrapolation of retrospective data has proven
useful in resource-poor areas, for example, to establish levels
of antimicrobial resistance in areas with minimal surveillance
[5]. More broadly, historical disease data are often used for
model parameter estimation [6-8]. Data used are often not
confined to epidemiological data. For example, climate data
have been used to develop outbreak models that are affected by
environmental factors, such as malaria, dengue, and cholera [9].
However, these data are typically difficult to use owing to poor
organization and integration. Extracting relevant information
from official reports is time consuming.

Epidemiological data are rarely easily accessible or available
in an easily analyzed format. There are efforts to circumvent
these issues, such as Project Tycho [10,11] and Gideon [12],
but these Web applications have limitations. Project Tycho is
currently limited to data from the National Notifiable Disease
Surveillance System in the United States and Gideon offers its
data for a fee, which may prove to be prohibitive for some public
health users. Furthermore, neither provide information to
contextualize or describe historical outbreaks nor the tools to
meaningfully relate a present situation to a past one.

Rapid, Facile Decision Support Using Historical Data
To the authors’ knowledge, there have been no previous formal
attempts to build a decision-support application based on
historical data. However, historical analogies have been utilized
for disease projection and forecasting. In 2010, Haiti
experienced its first cholera outbreak in over 100 years, months

after being struck by an earthquake that damaged its
infrastructure and gave rise to poor sanitary conditions [13]. In
the days following the first case notifications, the US Centers
for Disease Control and Prevention (CDC) contextualized the
Haiti outbreak by comparing it with a similar outbreak in Peru
[14]. As more surveillance data became available and forecasting
models were developed, more complex projections were
established. However, quick comparisons, such as the historical
analogy model that provided a notification to the Ministere de
la Sante Publique de la Population of Haiti of the need to prepare
for a large epidemic [15].

Currently, internet access is widely available around the globe.
More than 40% of the world’s population has access to the
World Wide Web [16]. Hence, Web-based analytics that
facilitate outbreak investigation have the potential to improve
outbreak control around the world. In this study, we presented
a Web-based visual analytic called Analytics for the
Investigation of Disease Outbreaks (AIDO) available under the
domain name bsvgateway.org [17], which has been developed
to facilitate situational awareness in the early stages of an
infectious disease outbreak. AIDO allows matching of unfolding
outbreak data to a representative library of historical outbreaks
and provides epidemiological clues that facilitate a user’s
understanding of an unfolding outbreak and enables informed
decisions on mitigation actions. This tool currently has analytics
for 28 infectious diseases and contains a browse library for an
additional 11 diseases. We described the methodology used to
develop this tool and illustrated the utility of the tool using 4
case studies, one of which is described in detail. We offer AIDO
as a rapid, easy-to-use no cost analytic for outbreak investigation
and short-term forecasting.

Methods

To develop AIDO, we used the following iterative process: (1)
collect historical outbreak data; (2) develop AIDO algorithms;
(3) develop the user interface, additional visuals, and
functionalities; and (4) perform verification and validation. In
this section, we have described the process for developing a
disease-specific representative historical outbreak library, the
associated algorithms, and the AIDO interface.

Collect Historical Outbreak Data
AIDO contains representative outbreak data for 39 diseases
(Multimedia Appendix 1). We defined a representative library
as one that includes outbreaks with a broad range of cumulative
case counts, outbreak durations, diverse circumstances, and
which occur in a variety of locations. Outbreak data were
identified using official academic and government data, as well
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as retrospective studies. Data sources included ProMED [18,19],
CDC [20], World Health Organization [21,22], Eurosurveillance
[23], European Centre for Disease Prevention and Control
Disease Reports [24], and government Ministry of Health
databases (available from Biosurveillance Resource Directory
under the domain name bsvgateway.org) [25], as well as other
scholarly journals available on PubMed and Google Scholar.
If data were only available in the graphical form (eg, graphs in
a PDF report or peer-reviewed publication), plots were digitized
using PlotDigitizer [26].

To be considered for inclusion in a disease library, outbreak
data must contain (1) a time series of case counts, (2) enough
associated data to perform property analysis (described below),
and (3) enough metadata to annotate the outbreak (described
below). To apply analytics to a disease library, there must be
(1) a minimum of 10 outbreaks included per disease library and
(2) sufficient data to complete the property identification
protocol (described below). Our analytics rely on a robust
library; therefore, it is necessary to have a minimum threshold.
A total of 10 outbreaks were considered to be a reasonable lower
limit and produced reasonable results. In general, outbreaks that
occurred during or after the year 2000 were prioritized for
inclusion to represent current natural and built environments.
However, in cases of rare diseases, outbreaks from previous
years were included to achieve the minimum threshold for
analysis (eg, both Ebola and Marburg libraries include outbreaks
that occurred before 2000).

In addition to the outbreak time series, detailed information on
factors that influenced the outbreak was also collected and used
to describe each outbreak. Information collected included index
case, important dates, the vector (if applicable), transmission
routes, pathogen classification, case definition, geographic and

historical information, and identified risk factors and control
measures that were implemented.

Algorithm Development

Similarity Algorithm
The similarity algorithm identifies outbreaks similar to the user’s
unfolding situation through a similarity score that is computed
as a sum of values assigned to weighted properties specific to
a disease. The algorithm has 3 components: (1) disease-specific
properties; (2) weights calculated for each property; and (3)
computation of the weighted sum by the AIDO algorithm. Here,
we have described the statistical process used to identify
properties, the procedure used to weight properties for relative
importance, and the final equation used in this algorithm.
Diseases with less than 10 outbreaks do not have an associated
similarity algorithm and are represented in AIDO as
browse-only.

Property selection: In AIDO, properties are characteristics that
influence the case count or duration of outbreaks. In essence,
these are the population-level signatures that help match a user’s
situation to outbreaks in our library. There were 3 types of
properties: (1) categorical (eg, vaccination status: 90% to 100%,
80% to 89%, 50% to 79%, and less than 50%), (2) continuous
(eg, physician density: range of values 0.1 to 10), and (3) binary
(eg, population movement: yes or no). Properties were
discretized if extant literature supported categorization of
continuous variables. We identified 27 different properties that
were used to evaluate outbreaks across all diseases for their
effect on case count and duration of an outbreak. These
properties and their definitions are included in Table 1.
Properties were further categorized into 3 domains.
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Table 1. Properties collected for statistical analysis.

DescriptionName (variable type)

Domain: population

Population of affected location as a continuous variablePopulation (continuous)

Population of affected location. Discretized into groups based on orders of magnitudePopulation (categorical)

Endemicity status (ie, endemic or nonendemic to the region) during the time of the out-
break

Disease status (binary)

Binary categorization of the relative population density of the outbreak’s locationRural versus urban (binary)

Relevant age categories or median age of reported cases. (Varies by disease; groupings
are identified using published literature)

Age stratification (categorical)

Binary (yes or no) indicator describing if the outbreak occurred in the general population
or a particular group with a specific common exposure or risk factor

Special population group (binary)

Vaccine coverage (%) of the country and/or region of interestVaccination status (categorical)

Indication of whether or not large-scale population movement (eg, mass migration and
influx of a refugee population) was an influential component of the outbreak

Population movement (binary)

Fraction of cases in males (identified using the literature)Sex (continuous)

Domain: location

Climate type corresponding to the location of interest, represented as the first letter of
the Köppen-Geiger climate classification key (A, B, C, D, and E) [27,28]

Climate (categorical)

Time of year (Spring, Summer, Autumn, and Winter) during which the majority of the
outbreak occurred

Season (categorical)

Precipitation category corresponding to the location of interest, represented as the second
letter in the Köppen-Geiger climate classification (f, m, w, s, W, S, T, and F)

Precipitation (categorical)

Binary indicator describing the typical weather patterns (ie, rainy or dry) in the location
at the start of the outbreak

Rainy versus dry (binary)

Binary indicator describing if a natural disaster appeared to be associated with the onset
of the outbreak

Natural disaster (binary)

HDI in the location and year of interest [29]. Both categorical and continuous values were
tested. In the event that both properties were significantly related to outcomes, categorical
values were preferred because of they are more usable within the user interface.

Human Development Index (HDI; categorical or con-
tinuous)

Physician density per 1000 persons in the year of interest, or the most recent year reported
[30]

Physician density (continuous)

Domain: disease

Main source of exposure to the pathogen of interestPathogen source (categorical)

Type of outbreak as reflected in the outbreak curve shape (point source, common source,
and propagated outbreak)

Outbreak curve (categorical)

The most relevant genus/species/classification of the disease vectorVector type (categorical)

Percent of fatal casesCase fatality rate (CFR; continuous)

Number of new cases per 1000 personsAttack rate (continuous)

Classification of reported cases (suspected, probable, confirmed, or any combination
thereof)

Case definition (categorical)

Description of clinical disease presentation (eg, bubonic plague and pneumonic plague)Disease presentation classification (categorical)

Reported contact with potentially infectious animal (used for zoonotic diseases). Can be
binary (yes or no) or categorical (ie, contact with particular animal), depending on the
level of data available in literature

Animal contact (binary or categorical)

Product or site epidemiologically linked to the outbreak (used for foodborne illnesses)Contamination source (categorical)

Mode of transmission that best characterizes the majority of disease spread during the
outbreak (eg, airborne and direct contact)

Transmission mode (categorical)

Geographic proximity of cases to a known or likely source of contaminationOutbreak source proximity (categorical)

Etiological agentOutbreak pathogen (categorical)
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Available data for all properties were collected for each outbreak
in AIDO. Statistical analyses were used to identify which
properties separated outbreaks on the basis of outbreak size or
duration for use in the similarity algorithm described in the
following equation.

Outbreak similarity scores are generated using this simple
weighted sum such that 0≤wi, mi ≤1 and the sum of all wi=1,
which ensure that 0≤s ≤1. Here, s is the outbreak’s similarity
score, K is the number of parameters considered, wi is the weight
of parameter i, and mi is the outbreak’s match score of parameter
i (ie, how well the outbreak’s value for parameter i matches the
user’s value provided in the query form). Note that although
this equation returns a score, s, between 0 and 1, AIDO displays
scores as percentages (ie, s ⋅100).

Statistical analyses were conducted to determine which
properties to include in the disease specific similarity algorithm
based on relationships with outbreak magnitude and duration.
A conclusion that there is a meaningful association (ie, statistical
significance or a strong enough correlation) indicates that this
property helps to distinguish outbreaks of different magnitude
or length from one another, and thus can be used to find
outbreaks most similar to a user’s data. The results from the
property analysis do not reflect or intend to imply any causative
relationship between a property and outbreaks of a given disease.
A statistical association is merely reflective of a property’s
relative ability to discriminate between outbreaks of different
sizes and lengths.

To perform the statistical analysis, a series of statistical tests
were automated using R (R-foundation) [31]. Properties were
segregated into their variable type: binary, categorical
(multilevel), or continuous. Figure 1 illustrates the process by
which these statistical analyses were completed for categorical
variables. For a given disease, after identifying all properties
listed in Table 1, statistical assessments first measured whether
or not the data met the assumptions of normality for the
distribution of residuals as well as equality of variance
(homoscedasticity) by performing the Shapiro-Wilk and
Brown-Forsythe tests, respectively. For continuous variables,
only the distribution of the residuals was assessed, and for
instances where the distribution was normal (Shapiro-Wilk test),
a Pearson correlation was run. A Spearman correlation was
performed on properties with non-normal distributions. We
assume that all values for dependent property variables (both

case count and duration) are independent, as we did not have
any prior knowledge that these values are dependent on one
another in any way. As our data are curated from available
scientific literature and published official reports from different
locations across different years, we assume all individual values
to be independent from other values and outbreaks in our library.

Following assessments of normality and homoscedasticity,
statistical tests of association, depending on variable type, were
performed (either T-test, one-way analysis of variance
(ANOVA), or Pearson or Spearman correlation) to assess each
property’s relationship with both case count and duration,
independently. t test and ANOVA F test results were assessed
at a significance level of 0.05, whereas a correlation above 0.30
was considered a meaningful association [32]. Properties that
did not meet these criteria were excluded from the similarity
algorithm, whereas those that did meet these criteria were
included.

Weight calculation for selected properties: In the previous
sections, analyses of outbreak data have been dedicated to
determining which properties correlate most strongly with the
duration and number of cases in the outbreaks of a given disease.
The ultimate goal of these properties is to allow AIDO to sort
the historical outbreaks based on the user’s input. The exact
process used to create this ranking is described in later sections,
but in short, the similarity algorithm is a function that maps the
case count, duration, and disease-specific properties of the user’s
input and the historical outbreak to a number between 0 and 1.
The set of values that are used by the similarity score are
referred to as parameters. These include the user’s input for
case count and duration.

After determining which parameters would be included in the
algorithm, a modified sensitivity analysis was used to determine
the weights for each parameter. The sensitivity analysis
determines the relative importance of selected parameters to
size and duration of the outbreak. For all algorithms, the first 2
parameters are case count and duration, which were given the
greatest weight and were not considered in the processing done
for the weighting algorithm. For the additional disease-specific
properties, weights were calculated using an automatic algorithm
that compares each outbreak to all other outbreaks for a given
disease. The effect of each property on the ranking of outbreaks
in the library was evaluated. If removing a property had a large
effect on the order of the outbreaks, it was inferred that the
excluded property was important and should be given a greater
weight. This evaluation was conducted for all properties for a
given disease, and relative ranking or weights were determined.
The sum of all weights was set to 1. A more detailed description
of the process is given in Multimedia Appendix 2.
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Figure 1. Schematic depicting the flow of statistical operations performed on categorical properties during property analysis.

Additional Analytics
In addition to the similarity algorithm, AIDO includes a number
of other visual analytics designed to enhance situational
awareness. Use of these analytics is illustrated in the Results
section, Case Study, and associated figures.

Short-term forecasting: The AIDO disease library can also be
used to perform short-term forecasting using the method of
analogs (similar to, but simplified from, the study of Viboud et
al described above [3]) approach. As a first step in this method,
the cumulative case count curves for all outbreaks for the disease
of interest were aligned in time. The distance criterion used in
AIDO is simpler than that used in Viboud et al; in AIDO,
because outbreaks are first deliberately aligned in time and
because AIDO stores representative outbreaks and not all
outbreaks, all available outbreaks are used in the analysis (ie,
without using all outbreaks, there would not be enough data to

attempt the analysis). The mean and SD at each time point were
calculated and fit to a normal distribution. This distribution was
then used to find the median, 50% prediction interval (PI) and
90% PI at each time unit. AIDO institutes a lower bound of zero
(case counts cannot be below zero). To customize the forecast
to the user, each case count is weighted in proportion to its
outbreak similarity score; thus, case counts in outbreaks that
are scored higher weigh more than case counts in outbreaks that
are scored lower. To achieve this, AIDO computed weighted
mean and SD values, which were then used as the normal
distribution’s parameters.

AIDO currently requires at least 10 data points at each time
point. Once there are fewer than 10 data points, the forecast
stops. If necessary, AIDO will use cubic B-spline interpolation
to handle time series interval granularity issues. For example,
if there are both monthly and weekly data, cubic B-spline
interpolation will be used to fill in the gaps in the monthly data
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so that they can be used alongside the weekly data. AIDO
interpolates at the finest resolution present in each outbreak
library; although interpolating epidemiological data may
introduce errors into the forecasting algorithm, the authors felt
that because the method of analogs is already a rough forecasting
measure that in practice yields reasonably large PIs, the
additional error provided by interpolation would be
unsubstantial.

The method of analogs approach has been applied in fields such
as meteorology, climatology, and epidemiology [3,33,34]. When
a user sorts results by similarity score, a short-term forecast is
displayed at the top of the sorted outbreak results. This graph
presents a simple custom forecast of cumulative disease
incidence based on user input and our library of historical
outbreak curves.

Anomaly detection: AIDO features an anomaly detection
component that enables a user to compare their values to the
values in AIDO’s historical outbreak database. Rather than
employing a specific anomaly detection algorithm, AIDO offers
a simple visual approach to guide the user’s analysis and identify
anomalies. We display the user’s value among all outbreak
values so that the user can visually see where their values lie.
For example, for discrete variables, we draw a pie chart and
highlight the section that the user falls into; if the user’s slice
represents only 5% of all outbreaks, for example, then this may
be indicative of an anomaly. For continuous variables, we plot
all outbreak points and show the corresponding box plot and
highlight the user’s value; here, an anomaly may be if the user’s
point lies within the outliers. An anomaly for the user’s data is
easily seen through such visualizations and directs the user’s
attention to key features of their unfolding event that may
warrant further investigation.

Owing to data sparsity issues and significant differences between
disease presentations, AIDO focuses on a qualitative, rather
than quantitative, anomaly detection approach that requires user
engagement and interpretation. Future work, however, could
include automated quantitative anomaly detection results. There
are a number of unsupervised anomaly detection algorithms
that could be explored [35]. For example, classifier-adjusted
density estimation (CADE) is a promising nonparametric
unsupervised anomaly detection algorithm [36,37]; CADE and
many other such algorithms, however, often require a significant
volume of data for analysis, which can prove to be difficult
when epidemiological data are used.

Developing the User Interface, Additional Visuals, and
Functionalities
AIDO functionalities are written in Python [38] using the Django
[39] Web framework and PostgreSQL [40] for the backend.
Bootstrap [41], jQuery [42], and Plotly [43] are used on the
front end for overall user interface design or functionality and
graphs. The AIDO homepage and various features of the user
interface are described in the Results section.

Outbreak comparisons, browsing and related outbreaks: An
outbreak comparison graph is displayed on each result page that

shows the point estimate for user’s values in comparison to the
5 outbreaks listed on that page. In addition to the analytics
provided, the interface allows users to explore the outbreaks
available in each library without making use of the analytic
components. We refer to this as browsing the library. Utility of
these features were evaluated in the case study detailed in the
Results section.

We noted in our analysis of representative libraries that some
outbreaks in our libraries have meaningful relationships between
each other. For example, there are some instances of outbreaks
that were related because of common exposure to contaminated
food that is spread to multiple locations in a country. Other
times, outbreaks might be related by virtue of an individual
seeding a new outbreak of the same illness in a new location.
AIDO provides such information to the user if this option is
selected in the analytic.

Performing Verification and Validation
Verification of AIDO was performed using more than 200
automated tests. These tests are run automatically every time
the code base is changed, allowing an alarm to be raised before
deployment if an error in the codebase is detected. In addition,
we performed two manual tests after implementation of
disease-specific algorithms in AIDO. The first uses data for
outbreaks already in the library to verify a 100% similarity
match between identical outbreaks. The second uses outbreaks
that were not included in the library as test case scenarios. Here,
we qualitatively observe if the highest matching outbreaks are
similar to the situation from the test outbreak.

AIDO also underwent extensive user interface evaluation and
user experience testing by several external entities such as
Massachusetts Institute of Technology Lincoln Labs, a user
interface design class from the University of Washington, the
Fusion Division within the Office of the Assistant Secretary for
Preparedness and Response in the US Department of Health
Human Services, Science and Technology Directorate in the
US Department of Homeland Security, community health
epidemiologists in the state of New Mexico, US CDC, and the
National Bio-surveillance Integration Center.

Results

Disease Libraries and Algorithm Properties
Currently, AIDO contains 673 outbreaks across 39 different
diseases. Figure 2 illustrates the geographic breadth and
multicontinent coverage of outbreaks for 4 diseases (measles,
Q fever, dengue, and chikungunya). Multimedia Appendix 1
provides data on the total number of outbreaks, geographical
distribution, and algorithm properties for all diseases in AIDO.
The properties identified for the similarity algorithms for the 4
diseases are shown in Table 2. Unsurprisingly, precipitation
and climate were identified as relevant properties for
mosquito-borne diseases such as chikungunya and dengue.
Vaccination coverage was found to be important for measles
outbreaks and animal-specific properties were considered
important for Q fever (a zoonotic disease).
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Figure 2. Geographic spread of historical libraries for four diseases. Points are proportional in size to the number of outbreaks in that country within
our library.

Table 2. Measles, Q fever, dengue, and chikungunya algorithm properties.

Algorithm PropertiesDisease

Vaccination status (country)Measles

Vaccination status (region)

Physician density

Climate

Animal contactQ fever

HDIa

Affected animal

Outbreak source proximity

Physician densityDengue

Climate

Population (discrete)

PrecipitationChikungunya

HDI

aHDI: Human Development Index.

Statistically significant algorithm properties for the 4 diseases
highlighted in the study are given.

An analysis of properties identified for diseases with similar
characteristics was conducted to identify trends in properties
across similar diseases Multimedia Appendix 3 show the

comparison of properties for mosquito-borne diseases and
vaccine preventable diseases that are part of the AIDO library.
Although there are some similarities across diseases, we find
that statistically important properties tend to vary, even between
similar diseases, which one may not expect given common
modes of transmission such as mosquitoes as vectors or
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vaccine-preventable diseases. This may be due to our emphasis
on including diverse representative outbreak presentations in
our libraries.

Case Study: Q Fever Outbreak in Bilbao, Spain 2014
To describe a plausible use case in AIDO, we present a case
study on a Q fever outbreak in Bilbao, Spain, in 2014. This
outbreak was described in depth by Alonso et al [44]. This
disease and outbreak combination was selected because available
data were detailed enough to illustrate multiple features of
AIDO.

AIDO user input data: Q fever was selected as the disease of
interest from the AIDO homepage and the following information
was used to populate the user input form (Figure 3). This
outbreak occurred among workers at a waste-sorting plant in
Bilbao, Spain, between February and April 2014. Approximately
10 cases were reported in the first 2 weeks of the outbreak [44].
The plant employed about 100 employees, was located in a
municipality, and the patients did not report regular contact with
animal hosts [44]. The human development index (HDI) for
Spain in 2014 was 0.834 [28]. Information about animal hosts
and proximity to the farm was not available during the early
stages of this outbreak and was left blank. Figure 3 also shows
the ability to sort the AIDO library for Q fever based on date
and distance from location and illustrates the expanded filter
results that can be used to narrow down outbreaks with specific
properties.

Analysis of AIDO output: After completion of the similarity
algorithm computation, the AIDO output showed the top
matching outbreaks in the outbreak comparison graph and details
of the five most similar outbreaks on page 1 (Figure 4). An
example of information provided for each outbreak in AIDO is
given here. In this case study, the outbreak comparison graph
showed that the 5 most similar outbreaks had cumulative cases
ranging from 10 to 100 cases and a total duration of 2 weeks to
6 months. The Q fever outbreak reported from Italy in 1993 and
United Kingdom (2000) were the most similar outbreaks (80%
and 79% similarity, respectively; Figure 4 shows the Italian
outbreak). A radar plot is used to illustrate computation of the
similarity score. This plot can be accessed through the view this
outbreak’s detailed score hyperlink under the epidemic curve
graph. Further examination of the metadata showed that both
outbreaks were caused by environmental exposure (sheep
migration and contaminated strawboard in a factory office,
respectively). This is similar to the probable cause of the

outbreak in Bilbao, animal remains that had contaminated the
waste-sorting environment at a factory [44].

The other 3 outbreaks with the highest similarity score included
outbreaks from Hungary in 2013 (77%), Iraq in 2005 (75%),
and Canada in 1987 (69%). The outbreak factors revealed that
these epidemics also occurred among small groups of people
associated by work and that the case count and duration were
similar. Analysis using the anomaly detection features (Figure
5 top panel) showed that the case study outbreak parameters
fell within the normal range for natural outbreaks and revealed
high likelihood of the waste materials of sheep and goats as the
cause of this outbreak. The short-term forecasting algorithm
predicted a mean cumulative case count of 50 to 100 cases
(Figure 5 bottom panel). Figure 6 shows AIDO outbreaks sorted
by date and distance from the location (Spain).

Using AIDO’s analysis, it could be hypothesized that the case
study outbreak in Spain was likely to have 30 to 50 cases during
the initial one to two months of the outbreak. This was
confirmed by Alonso et al, who showed that the Spanish
outbreak reported 45 cases from February 17 to April 27, 2014
[44]. The short-term forecast analysis in AIDO accurately
predicted the expected case count and duration for the unfolding
outbreak using only data from the initial 2 weeks. This case
study shows that AIDO can be used during initial stages of an
outbreak with minimum input data and information on expected
case count and duration, and possible causes can be gleaned
from the analysis. AIDO analysis can be performed iteratively
as the outbreak progresses.

The AIDO Q fever library did not contain any related outbreaks.
Figure 7 describes the related outbreak feature by showing the
various outbreaks connected to the France 2008-2011 measles
outbreak. These graphs provide information on the timeline
associated with the start of related outbreaks and alerts the user
on the possibility of the unfolding outbreak being part of a larger
phenomenon. The view related outbreaks hyperlink under
relevant outbreaks provides access to the related outbreak
information.

All disease libraries in AIDO were evaluated using multiple
case studies similar to the Q fever case study presented above.
Details on 3 additional case studies for chikungunya [45],
measles [46], and dengue [47-49] are given in Multimedia
Appendix 4. These case studies also demonstrate the utility of
AIDO analysis during the unfolding stage (3 to 4 weeks) of an
outbreak to identify possible case count, duration, and distinctive
features during the epidemic.
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Figure 3. AIDO data input forms. Panel A shows the AIDO home page and a drop down menu with Q-fever selected. This page also contains links to
a tutorial, frequently asked questions, and a feedback form. Panel B shows the user input form, filled with data for the Bilbao outbreak. Panel C shows
the filter options available for analysis.

Figure 4. AIDO case study: Q-fever outbreak in in Bilbao, Spain in 2014. Panel A shows the outbreak comparison graph for the five most similar
outbreaks, and a point estimate reflecting the user's situation in this context. Here, line colors with higher saturation correspond to higher similarity. In
panel B, the graph shows an outbreak time series for a Q Fever outbreak in Italy in 1993. Panel C shows a breakdown of the similarity score between
the user's unfolding outbreak and the historical outbreak. All graphs presented in AIDO are interactive and available for download in multiple formats.
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Figure 5. Additional analytics-anomaly detection and short-term forecast. Panel A illustrates two types of graphs used in the anomaly detection tab.
Continuous variables (e.g., average cases per day, population at risk, or total cases) are shown as box plots. Discrete or categorical variables (e.g., season
or affected animal) are shown as pie charts. The example presented shows that the case study outbreak is similar to other outbreaks included in our
library. Panel B shows short term forecasting using the method of analogs. The data shown here can be used to estimate cumulative case count. This
figure also demonstrates how data points are aligned for the short-term forecast.
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Figure 6. Browse functionality. This figure demonstrates browse functionality by date and by location available on AIDO.
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Figure 7. Example of the related outbreak interface. Here, we show outbreaks related to the France 2008-2011 measles epidemic. All graphs presented
in AIDO are interactive and available for download in multiple formats.

Discussion

AIDO presents relevant outbreak data in a visually concise
manner with graphs and point estimates of the user’s input
scenario in the context of the historical outbreak. Its analysis
can provide an estimated case count and duration (short-term
forecasting) and outbreak control measures that were effective
in the past and AIDO facilitates delivery of outbreak information
in an easy-to-interpret format.

AIDO is intended for members of the infectious disease
surveillance community, both at the global level as well as the
local level. A nongovernmental organization studying an
ongoing outbreak can use this tool to analyze the scope of a
current outbreak in any part of the world and devise control
strategies that have proven effective in similar historical
outbreaks. An individual physician may find this tool useful in
understanding their case counts in a wider context and help
facilitate their decision-making process on reporting relevant
data to authorities. Individual analysts or local epidemiologists
can use this tool as an aid in accessing the ongoing outbreak
with increased situational awareness on what happens in their
region and in similar regions around the world. In effect, this
feature provides a projection of how the outbreak may unfold
and could be considered a form of forecasting.

The algorithms and visuals available in AIDO inform users
about the historical and geographical context of outbreaks for
a given disease. The analysis also increases a user’s knowledge
on diverse outbreak scenarios associated with a given disease.
This information may enhance understanding on possible routes

for outbreak progression (eg, transportation-associated global
transmission). The related outbreak feature of AIDO can be
utilized to generate hypotheses on next hot spots for a given
outbreak and improve surveillance efforts in those locations.
The anomaly detection algorithm on AIDO was specifically
designed to detect anomalous presentations of an unfolding
outbreak, perhaps biothreat scenarios. External evaluators of
AIDO described it as research at fingertips for analysts or users.
AIDO can also be used in education or training of
epidemiologists.

Historical data have been used to develop epidemiological
models. However, most models have challenges becoming
operationalized owing to a variety of reasons [50]. AIDO is a
tool that combines extensive epidemiological data with novel
but simple analytics to contextualize and generate hypotheses
about the trajectory of unfolding outbreaks. Rather than focusing
on complex epidemiological models (which we recognize have
substantial use and utility in the field), we take a historical
approach and aim to identify relevant events that have already
happened. We believe that this approach is novel and can
provide complementary information to that derived from
traditional modeling approaches.

Limitations
It is important to note that our approach relies on a few
recognized limitations. First, we know from prior research that
historical data are subject to change and are not fully complete
[51]. To minimize this known bias, we used the most complete
data available. However, it is likely that the data presented in
our libraries include some known reporting bias.
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Relatedly, the outbreak-matching algorithm depends on the
diversity of historical outbreaks that exist in the library. This
may particularly affect AIDO when investigating outbreaks
with no precedence. For example, the 2014 Ebola outbreak in
West Africa had no historical counterparts. Using AIDO in these
situations may prove to be less reliable. However, we also
believe that the anomaly detection functions provide use in these
unprecedented situations.

As our libraries are created using publicly available data, it is
also likely that our libraries are slightly skewed toward large
or highly publicized outbreaks. Furthermore, because of this
bias, data are much more prevalent in nations with robust
surveillance systems. For example, Chase-Topping et al describe
this trend with respect to worldwide incidence of Escherichia
coli O157. Although food contamination of E. coli is present
worldwide, outbreak investigations are conducted almost
exclusively by developed nations [52]. It is because of this
known bias that we aim for representative outbreak libraries
that showcase the known breadth of disease outbreak
presentation. However, it is unlikely that our effort to create
representative libraries completely eliminates this bias.

AIDO data are largely limited to diseases affecting humans.
Although we have libraries for Porcine Epidemic Diarrhea Virus
and Foot and Mouth Disease, attempts to expand to other animal
diseases have been challenging. This is simply due to a lack of
data; time series data are difficult to obtain for animal diseases
and almost nonexistent in plant outbreaks. These types of data
are economically sensitive and, as a result, are not often
reported.

Additionally, our short-term forecasting component relies on a
method of analogs approach that assumes normally distributed
data, which may not always be a good assumption. As a result,
in some cases, the short-term forecast may not be reliable.

Finally, we wish to draw attention to some important
considerations of our statistical analysis for property
identification. As our procedure specifically identifies properties
that are statistically related to outbreak size or duration, any
updates to the disease library can, by design, change the related
properties. Therefore, the property analysis must be performed
any time there is a change in data. Automation of these processes
is planned as a future project.

Future Work
Data in AIDO are constantly being updated. Much of this work
is performed manually by a team of biologists and public health
experts. However, we have also created the infrastructure to
crowdsource data. AIDO includes a feedback form that allows
the user to send us information about an outbreak currently not
included in the library. The popularization of these types of
decision support tools and inclusion of outbreak data from
developing nations will facilitate enhanced disease surveillance
and outbreak control in developing nations. In addition, we hope
to promote AIDO as a training tool for epidemiologists. Owing
to the breadth of information contained, and the wide array of
analytics available, subject matter expert reviewers have
mentioned that this is a logical next step in AIDO’s
development. We also envision application of AIDO for
investigation of syndromic outbreaks through the development
of a feature that would allow the identification of a causative
agent for syndromic input into AIDO. These analyses would
focus on identifying a pathogen within disease families (eg,
gastroenteritis mosquito-borne disease family).

Conclusions
History often repeats itself. This is the simple underlying
premise of AIDO. Rather than using limited elements of
historical outbreak data to merely inform mathematical models,
AIDO takes advantage of the entire story of a historical outbreak
to offer examples of similar outbreaks for a current unfolding
event. Importantly, it facilitates the use of limited and isolated
information in the early stages of an outbreak to make decisions.
Information obtained from AIDO can also be used to improve
outbreak modeling parameters. AIDO aids in the investigation
of disease outbreaks by contextualizing an unfolding outbreak
with closely matching historical outbreaks. We posit that by
providing diverse layers of information, visuals, and analytics,
AIDO furnishes a comprehensive picture that may allow the
user to make informed decisions about outbreak control. The
tool allows no cost epidemiological evaluations, as it is freely
available on the internet and can be used iteratively during the
early stages of an outbreak. We offer this analytic to the global
infectious disease surveillance community as a rapid and facile
decision support tool that can be easily accessed—a simple yet
useful resource that is the first of its kind.
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Multimedia Appendix 1
Disease library details. This table shows all diseases currently included in AIDO and the number of outbreaks included in each
disease. The number of countries represented in each library helps to describe the geographic variation represented therein.
Properties included in the similarity algorithm for each disease (per the statistical procedure described in the main text) are also
given. Some diseases had fewer than 10 outbreaks, which was determined to be too little data to run the statistical analysis. In
addition, some other diseases did not have any statistically significant properties. These outbreaks are available to interact with
via “browsing”, but do not include the similarity matching algorithm analytics.

[DOCX File, 17KB-Multimedia Appendix 1]

Multimedia Appendix 2
Automatic weight calculation algorithm.

[DOCX File, 16KB-Multimedia Appendix 2]

Multimedia Appendix 3
Supplementary Table 2A and 2B: Mosquito borne and vaccine preventable disease property comparison. Table 2A compares
properties for eight mosquito-borne diseases. Table 2B shows a similar comparison for eight vaccine-preventable diseases. In
general, we find that similar diseases may have some properties in common, but properties tend to be distinct across diseases.
Note that no statistically significant properties were identified within our mumps library.

[DOCX File, 15KB-Multimedia Appendix 3]

Multimedia Appendix 4
Additional case study examples; chikungunya, measles and dengue outbreaks in 2017-2018. AIDO was used to evaluate three
recent outbreaks. AIDO input data and comparison of AIDO results and the actual outbreak data is given. Results showed that
AIDO was able to provide estimates of case count, duration for the outbreak as well as identify distinctive features with only
early stage data used as input.

[DOCX File, 13KB-Multimedia Appendix 4]
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