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Abstract

Background: Social media have been increasingly adopted by health agencies to disseminate information, interact with the
public, and understand public opinion. Among them, the Centers for Disease Control and Prevention (CDC) is one of the first
US government health agencies to adopt social media during health emergencies and crisis. It had been active on Twitter during
the 2016 Zika epidemic that caused 5168 domestic noncongenital cases in the United States.

Objective: The aim of this study was to quantify the temporal variabilities in CDC’s tweeting activities throughout the Zika
epidemic, public engagement defined as retweeting and replying, and Zika case counts. It then compares the patterns of these 3
datasets to identify possible discrepancy among domestic Zika case counts, CDC’s response on Twitter, and public engagement
in this topic.

Methods: All of the CDC-initiated tweets published in 2016 with corresponding retweets and replies were collected from 67
CDC–associated Twitter accounts. Both univariate and multivariate time series analyses were performed in each quarter of 2016
for domestic Zika case counts, CDC tweeting activities, and public engagement in the CDC-initiated tweets.

Results: CDC sent out >84.0% (5130/6104) of its Zika tweets in the first quarter of 2016 when Zika case counts were low in
the 50 US states and territories (only 560/5168, 10.8% cases and 662/38,885, 1.70% cases, respectively). While Zika case counts
increased dramatically in the second and third quarters, CDC efforts on Twitter substantially decreased. The time series of public
engagement in the CDC-initiated tweets generally differed among quarters and from that of original CDC tweets based on
autoregressive integrated moving average model results. Both original CDC tweets and public engagement had the highest mutual
information with Zika case counts in the second quarter. Furthermore, public engagement in the original CDC tweets was
substantially correlated with and preceded actual Zika case counts.

Conclusions: Considerable discrepancies existed among CDC’s original tweets regarding Zika, public engagement in these
tweets, and actual Zika epidemic. The patterns of these discrepancies also varied between different quarters in 2016. CDC was
much more active in the early warning of Zika, especially in the first quarter of 2016. Public engagement in CDC’s original tweets
served as a more prominent predictor of actual Zika epidemic than the number of CDC’s original tweets later in the year.

(JMIR Public Health Surveill 2018;4(4):e10827) doi: 10.2196/10827
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Introduction

The World Health Organization (WHO) has stated that health
is one of the most fundamental human rights [1]. Social media
have increasingly become critical venues for the public to seek,
share, and discuss information about health and diseases. Owing
to their low cost, easy access, and broad reach, social media
have also been increasingly adopted by health professionals and
agencies to enhance public health communication [2]. For
example, social media have been utilized to monitor food safety
and food-borne pathogen outbreak, such as Escherichia coli
O157 [3,4], to develop Web-based campaigns to quit smoking
in different countries and regions (United States, Canada, and
Hong Kong) with various social media platforms (Facebook,
Twitter, and WhatsApp [5]); promote exercise, fitness, and
healthy lifestyle (WeChat health campaign in China [6]; fitness
campaign in New Orleans, LA [7]); raise public awareness and
engagement regarding air quality and pollution [8]; and
understand and monitor public discussion of controversial topics
such as antimicrobial resistance [9].

Many government agencies and health officials (eg, WHO and
US Centers for Disease Control and Prevention, CDC, as well
as other local health departments) have also been adopting and
utilizing social media to disseminate information, communicate
with the public, and understand public opinions and concerns,
especially during health emergency and crisis. Europe has
developed a Web-based media and crisis communication
framework for influenza [10]. The WHO and CDC utilized
Twitter and Instagram during the Zika outbreak [11]. New York
City monitored Zika, Hepatitis A, and Ebola discussion in social
media and conducted risk communication with the general
public [12].

Evidently, for many infectious disease epidemics, it has been
demonstrated that Web-based discussion in social media can
be an imperative indicator of the actual disease severity and
help health officials to more accurately evaluate the
time-sensitive epidemic situation when actual case counts are
still being gathered and verified [13-15]. Time series analysis
is a versatile and powerful modeling framework to link
Web-based discussion and reveal the disease dynamics, as
demonstrated by the extant research on various epidemics
[16-18].

The 2016 Zika epidemic provides a great opportunity to
investigate and evaluate the CDC’s role and responsiveness on
social media. Zika was a relatively new infectious disease, which
affected men and women, fetuses, and infants with multiple
transmission routes. However, the general public usually had
very little knowledge and understanding about it. In 2016, Zika
caused 5168 confirmed noncongenital cases in the 50 states and
Washington DC in the United States, and much higher case
number in US territories [19]. Twitter is the major social media
outlet for the CDC, with a total of 67 official CDC–associated
Twitter accounts covering a wide variety of health- and
disease-related topics. Former CDC director Dr. Tom Frieden
was active on Twitter and hosted live Twitter chats with general
public [20], including a recent 1-hour live chat regarding Zika
in February 2016.

Despite CDC’s prominent Web-based presence and efforts,
inaccurate information regarding Zika proliferated on social
media and outperformed the CDC (and other legitimate sources
such as the WHO) by a large margin [21]. Studies have shown
a substantial topic discrepancy between public concern and the
CDC’s response to Zika on Twitter [22-25]. Another less
addressed aspect is the low rate of public engagement (measured
by the number of retweets and replies) on social media, where
social media should be a Web-based platform for public
engagement and interaction [26], not just one-directional news
outlet [8,27,28]. Furthermore, currently there is no study on the
temporal variability in the CDC’s response to different epidemic
stages of Zika for the entire year of 2016, its potential impact
on public engagement, and quantification of information
dissemination, as the CDC did not finalize and publish the
complete 2016 Zika case counts in the entire United States until
March 2018 [19].

Thus, there is a substantial knowledge gap in quantifying and
understanding the interaction among Zika epidemic, the CDC’s
dynamic response on social media (Twitter), and public
engagement to the CDC’s effort, as well as potential discrepancy
among these hierarchies during different stages of the Zika
epidemic. More specifically, original CDC-initiated tweets
regarding Zika represent the government agency’s
responsiveness to the Zika epidemic. Retweets and replies to
CDC’s original tweets quantify public engagement in the
discourse about Zika in Twitter. Between the 2, retweets enhance
Zika-related news and information discourse by replying
information to other users, whereas replies imply more in-depth
cognitive processing of this topic and contribute to the direct
interaction with CDC [29].

To address these issues, this study aims to quantify the CDC’s
responsiveness on Twitter and corresponding public engagement
during different stages of the 2016 Zika epidemic. We then
identify potential discrepancy among them using time series
analysis and information theory measurements. The results and
insights gained from this study will reveal the effectiveness of
CDC’s efforts in disseminating information on social media
and help develop more effective Web-based communication
strategies to inform public and combat fake information in
health-related topics.

Methods

Data Collection and Preparation
We collected all English tweets with the keyword “Zika”
published between January 1, 2016 and December 31, 2016,
using the Gnip Twitter application program interface.
Corresponding retweets and replies received by these tweets
were also collected. In addition, all tweets from 67 accounts
affiliated with CDC in 2016 were collected. Zika case counts
in the 50 US states and territories during the entire 2016 have
been retrieved from the official CDC Zika case report website
[29] and CDC’s final report of the 2016 Zika epidemic in the
United States [19].

Four time series were extracted from the original tweets (both
Zika-related and all tweets initiated by CDC), retweets, and
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replies (only to Zika-related CDC-initiated tweets). In addition,
2 additional time series of US Zika case counts (both 50 states
and 50 states plus territories) were obtained [19]. Given that
the dates of tweets, retweets, replies, and case counts were not
entirely consistent (eg, the CDC may not tweet about Zika every
day and may not publish case count on a regular basis), these
time series were first standardized into weekly basis. The data
were aggregated in weekly periods to ensure that each time
series has the same 52 data points for further analysis and
comparison. Monthly resolution was not adequate to perform
successive time series analyses (because each quarter only had
3 data points) while daily resolution required an extra step of
data interpolation (because each day did not necessarily had
Zika tweets and case reports), and weekly basis was well
balanced and should provide the highest signal-to-noise ratio
in this study. To establish a baseline scenario, we computed the
weekly number of tweets with any topic from all CDC accounts
and identified the top topics tweeted by CDC in 2016. Using
these data, we could calculate the ratio between weekly tweets
with the keyword of Zika and all tweets from the CDC, which
demonstrated the relative importance of Zika on the CDC’s
social media agenda. This estimate also helped reveal and assess
the CDC’s responsiveness to Zika at different stages of the
epidemic.

Univariate Time Series Analysis
Original Zika tweets from the CDC, corresponding retweets
and replies, and Zika case time series were plotted, visualized,
and examined for stationarity. After the initial screening, we
discovered a substantial temporal variability in the number of
original tweets, retweets, and replies, as well as Zika cases.
None of these time series was stationary. To characterize such
large temporal heterogeneity, we divided the entire year of 2016
into 4 quarters and performed further analysis within each
quarter. Furthermore, we calculated the ratio between Zika
tweets and all tweets from the CDC as a measurement to
quantify the relative importance of Zika among various
health-related topics from the CDC’s perspective.

These quarterly time series were first modeled as autoregressive
integrated moving average (ARIMA) models to reveal any
potential temporal characteristics such as linear trend,
seasonality, or temporal autocorrelation [16]. The following
equation:

shows the form of an ARIMA model with variable Xt, difference
term L, and parameters (p, d, q) (Equation 1). The 3 parameters
p, d, and q corresponded to autoregressive,
differencing/integrated (L), and moving average components
of the ARIMA model, respectively. The optimal model was
then chosen by minimizing the Akaike Information Criteria
(AIC) value among all possible competing models with different
parameters. The Zika case counts were excluded from this
analysis because most of the domestic Zika cases in 2016 were

travel-related and could not be well characterized by the ARIMA
model, and modeling the temporal dynamics of Zika was not
an aim of this study.

Multivariate Time Series Analysis
We calculated the lagged correlation between 2 time series using
the cross-correlation function (CCF) at different stages
represented by 4 quarters in 2016 to identify and quantify the
potential temporal discrepancy among Zika case counts, CDC’s
original tweets, and public engagement in these tweets (ie,
retweets and replies to CDC’s tweets). Specifically, we
compared time series of Zika case counts with that of original
CDC tweets to understand the CDC’s responsiveness to the
disease outbreak. In addition, time series of Zika case counts
and that of retweets and replies were compared with discovered
different levels of public engagement in reaction to the Zika
epidemic. Their respective CCFs were computed for each of
the 4 quarters in 2016. Given that the original CDC tweets were
always highly correlated with retweets and replies, we also
evaluated the dynamic change of public engagement by
calculating the ratio between the number of CDC’s original
Zika tweets and the number of retweets or replies across
different stages. In addition, we calculated the mutual
information between 2 time series using Dirichlet-multinomial
pseudo count Bayesian estimate of Shannon entropy, a more
informative metric than the CCF to reveal the potential mutual
information between 2 time series and quantify whether the
number of original CDC tweets about Zika and retweets and
replies received by them had adequate mutual information with
actual Zika case counts.

We constructed the ARIMA with External Variable (ARIMAX)
model for original CDC tweets, retweets, and replies in each
quarter of 2016, respectively. The ARIMAX model was a
multivariate extension of the ARIMA model and incorporated
an effective external variable (ie, Yt , representing a time series
of Zika case counts in this study):

The univariate ARIMA model and multivariate ARIMAX model
were then compared to see whether including external variable
actually increased the model performance by decreasing the
AIC value. The ARIMAX model was constructed on the basis
of the corresponding optimal ARIMA model in the univariate
time series analysis section. In other words, ARIMAX and
ARIMA models should have exactly the same p, d, and q
parameter values to correctly assess the effect of the external
variable. This revealed whether public engagement in CDC’s
original tweets significantly corresponded to the domestic Zika
epidemic. We then tested whether the number of original CDC
tweets, retweets, or replies could serve as an imperative indicator
of actual Zika case (or vice versa) in different stages by applying
the Granger causality test. The terms that needed to be first
differenced in the Granger test were determined from the
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corresponding ARIMA or ARIMAX model (ie, where parameter
d is nonzero).

Results

Descriptive and Univariate Time Series Analysis
Results
Among all tweets sent by the CDC in 2016, Zika was the third
most tweeted health topic, totaling >6000 tweets (including
4000 original tweets and another 2000 retweets by other
CDC–associated Twitter accounts), and was just behind
HIV/AIDS and sexually transmitted disease in entire 2016
(Figure 1). As there might be overlap between topics (eg,
Zika/sexually transmitted disease, Zika/Vaccine, HIV
AIDS/Pre-exposure prophylaxis, HPV/Vaccine, etc), a specific
tweet could belong to multiple topics. Thus, Zika was a highly
ranked and important health topic in 2016 according to the CDC.
Among all 67 CDC–associated Twitter accounts, 21 tweeted
about Zika in 2016. More than 60% (3663/ 6104) of Zika-related
tweets were posted by @CDCgov, @CDCTravel, @CDCGlobal,
and @CDCEmergency; these 4 were also the most active Twitter
accounts that disseminated Zika-related information consistently
through all 4 quarters in 2016. Although Zika was one of the

hot topics tweeted by the CDC, there was substantial temporal
heterogeneity in the CDC’s tweeting pattern regarding Zika.
More than 84.0% (5130/6104) of all Zika tweets were published
in the first quarter of 2016, with 5.6% (342/6104), 7.5%
(458/6104), and 2.4% (146/6104) for the subsequent quarters,
respectively (Figure 2). The top left of Figure 2 shows the
number of all tweets sent from all CDC–associated Twitter
accounts during 2016 (solid black line) and Zika-related tweets
(dashed blue line); the top right shows the number of
Zika-related tweets (solid black line) and Zika case counts in
50 states and DC (solid red line); the bottom left shows retweets
to CDC’s Zika tweets; and the bottom right shows replies to
CDC’s Zika tweets. As a comparison of the temporal dynamics,
domestic Zika case percentages in 50 states and DC were 10.8%
(560/5168), 26.0% (1343/5168), 52.8% (2728/5168), and 10.4%
(535/5168) in the 4 quarters, and case percentages in 50 states,
DC, and overseas territories were 1.70% (662/38,885), 5.91%
(2298/38,885), 58.46% (22,732/38,885), and 33.92%
(13,189/38,885) in the 4 quarters (Figure 3). Data were obtained
from the CDC Morbidity and Mortality Weekly Report [19].
Thus, the Zika epidemic dynamics was substantially different
from the CDC’s tweeting dynamics in 2016, as Zika case counts
were actually the lowest in the first quarter of 2016.

Figure 1. The top 15 most tweeted health topics by the Centers for Disease Control and Prevention (CDC) in 2016. STD: sexually transmitted disease
TB: tuberculosis; CVD: cardiovascular disease; PreP: Pre-exposure prophylaxis; HPV: Human papillomavirus.
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Figure 2. The time series of Zika tweets from the Centers for Disease Control and Prevention (CDC), corresponding retweets, replies, and all original
tweets from the CDC in 2016.
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Figure 3. Noncongenital Zika virus disease cases in 50 states/DC and both 50 states/DC and territories in 2016. CDC: Centers for Disease Control and
Prevention.

Zika was unequivocally the most tweeted health topic of the
CDC in the first quarter and was mentioned in almost 50.0%
(3052/6104) of all tweets in that quarter, dwarfing both
HIV/AIDS- and sexually transmitted disease-related tweets;
this substantial temporal heterogeneity was also demonstrated
by the distinct ARIMA models in each quarter (see Table 1, the
first column for original tweets). The optimal ARIMA model
in the first quarter was with parameter p, d, q=2, 0, 3, indicating
that the optimal time series model with the minimized AIC
value for original tweets did not need differencing (d=0, order
of differencing being 0, that is, already stationary and does not
need further differencing), and with autoregressive and moving
average term p=2 (indicating autoregressive time lag of 2) and
q=3 (indicating moving average order of 3), respectively. The
parameters associated with optimal ARIMA models in the next
3 quarters were p, d, q=2, 1, 3 (second quarter), 1, 1, 1 (third
quarter), and 2, 0, 3 (fourth quarter), respectively.

Retweets of and replies to the original Zika tweets from the
CDC generally followed the similar temporal characteristics,
where the first quarter had the largest number of both retweets
and replies (Figure 2, lower left and lower right, respectively).
The optimal ARIMA models were again distinct across the 4

quarters in 2016, for both retweets (Table 1, the second column)
and replies (Table 1, the third column). The only similarity was
retweets in the first and the second quarter, both of which had
the same parameterization (p, d, q=2, 1, 3). Comparing among
ARIMA models for original tweets, retweets, and replies, there
were only 2 pairs with the same model
parameterization—original and retweets in the second quarter
(both with p, d, q=2, 1, 3) and retweets and replies in the third
quarter (both with parameter values p, d, q=2, 1, 2). These
results revealed a substantial temporal variability across different
quarters of 2016 and among original tweets, retweets, and
replies.

Multivariate Time Series Analysis Results
As shown in Figure 4, strong temporal correlations were
discovered between original Zika tweets from the CDC and
retweets, as well as between original Zika tweets from the CDC
and replies in all quarters of 2016. Most retweets and replies
were centered at zero, indicating that general public’s interaction
with original CDC tweets was usually synchronized. Figures
5-7 provide the plots of the CCF between Zika case and each
of the following variables: original Zika tweets from the CDC,
retweets, and replies in each quarter of 2016, respectively.
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Table 1. Mutual Shannon information entropy, Autoregressive Integrated Moving Average or Autoregressive Integrated Moving Average with External
Variable model parameters, and Akaike Information Criteria values in different quarters of 2016.

Reply + CaseRetweeting without commenting +
Case

Original + CaseQuarters

Q1

0.090.010.04Mutual Info

2, 0, 22, 1, 32, 0, 3ARIMA(X)a Par

–1.21c

(950.05, 948.84)

–1.88c

(1341.51, 1339.63)

–2.25c

(976.61, 974.36)

dAICb

Q2

0.290.170.13Mutual Info

0, 1, 12, 1, 32, 1, 3ARIMA(X) Par

1.88

(709.18, 711.06)
–0.88c

(1207.14, 1206.26)

0.96

(722.54, 723.50)

dAIC

Q3

0.020.080.02Mutual Info

2, 1, 22, 1, 21, 1, 1ARIMA(X) Par

–0.62c

(738.76, 738.14)

1.82

(1172.01, 1173,83)

1.95

(719.51, 721.46)

dAIC

Q4

0.010.070.01Mutual Info

0, 0, 10, 1, 22, 0, 3ARIMA(X) Par

1.97

(353.23, 355.20)

1.62

(917.84, 919.46)
–0.59c

(453.28, 452.69)

dAIC

aARIMA(X): Autoregressive Integrated Moving Average (with External Variable).
bdAIC: difference in Akaike information criterion.
cNegative dAIC value indicates better performance of the ARIMAX model compared with its corresponding ARIMA model; hence, including Zika
case counts improves the model performance.

Figure 4. The cross-correlation function (CCF) between original Centers for Disease Control and Prevention (CDC) Zika tweets, retweets, and replies
in 4 quarters of 2016. ACF: autocorrelation function.

For original Zika tweets and Zika case counts, strong temporal
correlations were observed in the first, second, and fourth
quarter. In the first quarter, CDC’s tweets regarding Zika
preceded actual case counts for approximately 7-10 days,
indicated by the substantial lag of 7, 8, 9, and 10 (Figure 5, top
left). In the second quarter, CDC’s tweets were ahead of the

case for approximately 2 weeks (Figure 5, top right). In the
fourth quarter, CDC’s tweets were behind Zika case for
approximately 1-3 days (Figure 5, bottom right). In the third
quarter, there was no substantial correlation between the 2 time
series. These results revealed that the CDC was very active
during the early stage of the Zika epidemic (especially February
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2016) on social media when the actual case number was low
(Figure 2, top right).

The similar pattern was also observed between retweets and
Zika cases (Figure 6). The first quarter demonstrated a strong
temporal correlation between the 2, whereas there was no
substantial correlation in the fourth quarter. In other words, the
general public was more engaged in retweeting to help
disseminate the information during the first half of 2016.

The correlation between replies and Zika cases was also
explored and demonstrated (Figure 7). Replies preceded case
counts for about a week in the first quarter, indicating the
general public’s strong interests in discussing Zika and
interacting with the CDC on Twitter; this active engagement
decreased as time went by. By the fourth quarter of 2016, replies
were about 10 days behind actual cases.

In addition, we calculated the mutual information to explore
mutual dependence between Zika cases and each of these
activities on Twitter—original Zika tweets from the CDC,
retweets, and replies, from an information perspective (Table
1). In the first quarter, replies had the highest mutual information
(0.09) with Zika cases, which was even higher than original
Zika tweets from the CDC (0.04) and retweets (0.01).
Nevertheless, all these mutual information (ie, Shannon
information entropy) were low, indicating a potential
discrepancy between the discussion of Zika on Twitter and
actual epidemic. In the second quarter, replies, retweets, and
original Zika tweets from the CDC had 0.29, 0.17, and 0.13
mutual information with Zika cases, respectively, serving as
the highest mutual information of all 4 quarters in 2016. In the
third quarter, retweets had the highest mutual information with
Zika cases (0.08), followed by both original tweets and replies
tied at 0.02. In the fourth quarter, retweets got the highest mutual
information again (0.07), followed by original tweets and replies
with very low mutual information (0.01). In general, retweets
and replies had even more mutual information with Zika cases
compared with CDC’s original Zika tweets. Thus, the CDC’s
tweeting pattern was an inferior indicator of the Zika epidemic
than public engagement in its tweets as illustrated by the patterns
of retweets and replies.

The mutual information does not consider potential temporal
characteristics such as lag or trend. Therefore, we further
quantified whether including an external variable of Zika case
counts could increase the ARIMA model performance (Table

1). The analysis results showed that in the first quarter, all
ARIMAX models outperformed their ARIMA counterparts by
a large margin (difference of AIC [dAIC]=–2.25, –1.88, and
–1.21 for original Zika tweets, retweets, and replies,
respectively; dAIC was the difference of AIC values between
ARIMAX and ARIMA models, and negative dAIC value
indicated better performance of the ARIMAX model, that is,
including an external variable increased the model
predictability). Although Zika case counts were the lowest in
the first quarter, they still highly correlated with the temporal
dynamics of Web-based discussion of Zika. Including Zika case
counts only improved the ARIMAX model for retweets
(dAIC=–0.88) in the second quarter, for replies (dAIC=–0.62)
in the third quarter, and for original Zika tweets from CDC
(dAIC=–0.59) in the fourth quarter. These findings provided
further evidence to confirm the large temporal variability and
differences in the CDC’s response to Zika and public
engagement in their responses on Twitter.

In addition, we evaluated whether Zika case could be Granger
cause of original CDC tweets, retweets, and replies, or vice
versa. The Granger causality test revealed that case count was
not Granger cause for original Zika tweets from the CDC in
any quarter, and vice versa. Thus, the correlation between
CDC’s Zika tweets and actual Zika cases was not strong.
Retweets, however, could serve as Granger cause of Zika cases
for order from 1 to 5 (P=.05, .04, .02, .01, and .04, respectively)
in the first quarter; this coincided with previous findings that
retweets had a very high correlation with Zika cases in the first
quarter (Figure 6). Similarly, replies also served as Granger
cause in the first quarter for order 3, 4, and 5 (P=.03, .01, and
<.001, respectively). Furthermore, replies served as Granger
cause again in the fourth quarter for order 1 (P=.04). In contrast,
Zika case counts in the third quarter could be Granger cause for
replies with order 2 and 3 (P<.001 for both orders) but not vice
versa. This was the only exception when Zika cases served as
Granger cause for Twitter discussion. It is important to note
that Granger causality only provided statistical evidence for
potential causality and did not guarantee actual causality. For
example, replies as Granger cause in the first quarter did not
mean replies to CDC’s tweets “caused” Zika cases in the United
States. Therefore, we should interpret that replies preceded Zika
cases and had a strong association with Zika case counts at
selected orders. Furthermore, the temporal heterogeneity in
Granger test results showed variability across different quarters
in 2016.
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Figure 5. The cross-correlation function (CCF) between original Centers for Disease Control and Prevention (CDC) Zika tweets and domestic Zika
cases in 4 quarters of 2016. ACF: autocorrelation function.

Figure 6. The cross-correlation function (CCF) between retweets to Centers for Disease Control and Prevention (CDC) Zika tweets and domestic Zika
cases in 4 quarters of 2016. ACF: autocorrelation function.
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Figure 7. The cross-correlation function (CCF) between replies to Centers for Disease Control and Prevention (CDC) Zika tweets and domestic Zika
cases in 4 quarters of 2016. ACF: autocorrelation function.

Discussion

This study is the first of its kind that specifically investigates
the temporal variability in CDC’s tweeting activities regarding
Zika. More importantly, it links the temporal variability of Zika
cases in the United States to that of CDC’s social media
responses and public engagement in those social media
messages. In general, we discovered substantial discrepancy
among CDC’s tweets regarding Zika, public engagement, and
actual Zika epidemic in different stages of the epidemic in 2016.
As shown by our findings, there was a substantial discrepancy
between CDC’s response to Zika in Twitter and the Zika
epidemic. When Zika case counts were low in the United States
during the first quarter of 2016, CDC was very active in
disseminating information about Zika by sending out >84.0%
(5130/6104) of all its 2016 Zika tweets. The CDC and its former
director Dr Frieden even hosted 1-hour Twitter chat on February
16, 2016. All these activities correlated with active public
engagement, as retweets and replies were also the highest among
all quarters. Thus, the CDC was effective in the early warning
of the upcoming epidemic of Zika and successfully gained public
attention during the first quarter of 2016. However, when Zika
case counts started to increase sharply in the second and third
quarters of 2016, CDC’s Zika-related tweets decreased
substantially and did not catch up with the Zika case counts.
Nevertheless, public engagement in discussion of Zika on social
media could be influenced by some other factors such as news
source, personal familiarity with the disease, and potential

opinion leaders who may not necessarily be health-related. All
these could be future directions to expand this study.

While public engagement in CDC’s Zika tweets (ie, retweets
and replies) also decreased dramatically in the second and third
quarters of 2016, it was significantly associated with Zika cases,
as revealed by the performance of corresponding ARIMAX
models (compared with the original ARIMA models). When
more case counts (including both transmitted cases and
travel-related cases) were reported in Florida since late July and
from Summer Olympics in Brazil between August 5 and 21,
2016, retweets and replies to CDC’s Zika tweets increased again
substantially, demonstrating public’s growing and recurrent
awareness of this emerging health issue. The dynamic public
engagement in CDC’s Zika tweets was generally different
among quarters and was also substantially influenced by and
usually preceded the Zika epidemic. Therefore, public
engagement in CDC’s Zika tweets was generally a more
prominent predictor of the actual Zika epidemic than CDC’s
tweets later in the year.

Different from previous studies that have used social media
discussion trend to predict and adjust the actual disease
dynamics [13,16,18,30-33], this study used Zika case counts
and epidemic to infer the Twitter discussion dynamics and
revealed dynamic changes throughout the year; we made this
decision because the majority of domestic Zika cases in the
United States were travel-related and highly stochastic [19].
Therefore, they could not be accurately captured by statistical
models such as ARIMA or ARIMAX. Using social media
discussion to predict the actual disease dynamics is, thus, more
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useful for locally transmitted diseases, such as influenza, rather
than travel-related diseases.

This study has several limitations. First, we did not investigate
the actual content and user identities of retweets and replies.
One of the future directions is to investigate the content of these
messages by using topic modeling [24] and natural language
processing [34]. It will be especially valuable to examine the
patterns of replies to understand the public’s responses toward
the original tweets. For example, it will be interesting to examine
if public responses are neutral, synergistic, or antagonistic.
Another potential route was to investigate retweeting or replying
network, identify potential opinion leaders, and assess their
roles in disseminating health-related information from legitimate
sources such as the CDC and WHO.

In this study, we focused on public engagement in CDC’s tweets
(ie, retweets and replies). Nevertheless, it represents a relatively
small portion of public engagement in the general topic of Zika
compared with all Zika-related tweets. An extension of this
study could investigate the temporal dynamics of all Zika-related
retweets and replies and compare them with public engagement
in CDC’s Zika tweets. Similarly, the number of original Zika
tweets from the CDC were relatively low especially after the
first quarter in 2016, which might influence time series analysis
results (and it was also the reason we chose weekly but not a
daily resolution in this study). A potential remedy was to include
the temporal dynamics of all Zika-related tweets as a reference
in the future study and contrast that with the CDC’s tweeting
pattern.
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