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Abstract

Background: Despite the availability of free routine immunizations in low- and middle-income countries, many children are
not completely vaccinated, vaccinated late for age, or drop out from the course of the immunization schedule. Without the
technology to model and visualize risk of large datasets, vaccinators and policy makers are unable to identify target groups and
individuals at high risk of dropping out; thus default rates remain high, preventing universal immunization coverage. Predictive
analytics algorithm leverages artificial intelligence and uses statistical modeling, machine learning, and multidimensional data
mining to accurately identify children who are most likely to delay or miss their follow-up immunization visits.

Objective: This study aimed to conduct feasibility testing and validation of a predictive analytics algorithm to identify the
children who are likely to default on subsequent immunization visits for any vaccine included in the routine immunization
schedule.

Methods: The algorithm was developed using 47,554 longitudinal immunization records, which were classified into the training
and validation cohorts. Four machine learning models (random forest; recursive partitioning; support vector machines, SVMs;
and C-forest) were used to generate the algorithm that predicts the likelihood of each child defaulting from the follow-up
immunization visit. The following variables were used in the models as predictors of defaulting: gender of the child, language
spoken at the child’s house, place of residence of the child (town or city), enrollment vaccine, timeliness of vaccination, enrolling
staff (vaccinator or others), date of birth (accurate or estimated), and age group of the child. The models were encapsulated in
the predictive engine, which identified the most appropriate method to use in a given case. Each of the models was assessed in
terms of accuracy, precision (positive predictive value), sensitivity, specificity and negative predictive value, and area under the
curve (AUC).

Results: Out of 11,889 cases in the validation dataset, the random forest model correctly predicted 8994 cases, yielding 94.9%
sensitivity and 54.9% specificity. The C-forest model, SVMs, and recursive partitioning models improved prediction by achieving
352, 376, and 389 correctly predicted cases, respectively, above the predictions made by the random forest model. All models
had a C-statistic of 0.750 or above, whereas the highest statistic (AUC 0.791, 95% CI 0.784-0.798) was observed in the recursive
partitioning algorithm.
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Conclusions: This feasibility study demonstrates that predictive analytics can accurately identify children who are at a higher
risk for defaulting on follow-up immunization visits. Correct identification of potential defaulters opens a window for evidence-based
targeted interventions in resource limited settings to achieve optimal immunization coverage and timeliness.

(JMIR Public Health Surveill 2018;4(3):e63) doi: 10.2196/publichealth.9681
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Introduction

Despite the availability of free routine immunizations in low-
and middle-income countries (LMICs), many children are not
completely vaccinated, are vaccinated late for age, or drop out
from the course of the immunization schedule. According to
the World Health Organization (WHO) and United Nations
International Children's Emergency Fund (UNICEF)
immunization coverage estimates, the mean dropout rates for
Bacillus Calmette–Guérin (BCG) and the second dose of
measles-containing vaccine are 34.6% (SD 20.4%) in
low-income countries and 28.6% (SD 20.4%) in GAVI-eligible
LMICs [1]. Studies have reported consistent findings in which
the coverage rates of earlier vaccines are significantly higher
than the coverage for vaccines that are administered later on in
the immunization schedule, [2,3] with the highest dropout
occurring between the diphtheria-tetanus-pertussis (DTP3) dose
and the first dose of measles vaccine [2]. A probable explanation
is the relatively long time interval (35.5 weeks) between the
administration of the DTP3 vaccine (14 weeks) and measles
vaccine (9 months), which increases the likelihood of mothers
forgetting about the vaccination appointment or not having the
time to make scheduled visits for immunizations [3].

Despite individual efforts by governments to improve coverage
and reduce dropout rates, vaccinators lack readily available
on-site information tools to target children who are at highest
risk of dropout or late vaccination. To achieve full universal
coverage and improve the timeliness of individual vaccine doses,
low-resource countries can model and visualize the risk on large
datasets, including that at the individual level during
immunization visits, to identify and target children who are at
a high risk of dropping out or delaying the next vaccine dose.

In the era of big data, when the collection of massive amounts
of reliable data has become inexpensive and easy, predictive
analytics is being utilized in a wide variety of settings. The
fields of business, marketing, and finance were among the
earliest adopters of predictive analytics. One well-known
application is credit scoring, a predictive model that analyzes
a particular customer’s information, such as credit history, to
assess the potential risk of lending money to that customer.
Web-based retailers, such as Amazon, also utilize powerful
predictive algorithms to tailor item recommendations for the
individual experience of their users [4].

Predictive analytics technology uses mathematical and
computational statistical modeling, machine learning, and
multidimensional data mining techniques [5] to accurately
forecast future immunization outcomes based on existing data
and to predict parental adherence to routine childhood

immunization schedules. What makes predictive analytics
powerful and so widely applicable is the fact that the systems
can iteratively learn and improve over time [5] to achieve the
desired quality of predictive performance. These systems use
traditional statistical methods, such as the calculation of the
area under the system’s receiver operating characteristic (ROC)
curve, to measure the system’s predictive performance [6]. It
was not until electronic medical records and big data in health
care became more widely adopted that opportunities for using
predictive analytics in health began to increase [7]. A machine
learning algorithm built to optimize the management of patients
with chronic kidney disease in the United States was able to
identify the most probable data-driven clinical pathway and
predict the upcoming required intervention with an accuracy of
50%-75% [8]. A proof-of-concept study at the Department of
Medicine at Yale University created a random forest model and
“trained” it to predict the in-hospital mortality rate of patients
with sepsis. The model used local data from the hospital, and
it had an area under the curve (AUC) with a 95% CI of 0.86
(range 0.82-0.90), outperforming all traditional analytic models
used as controls with statistically significant results [9]. In
addition to anticipating outcomes based on the population level,
predictive analytics have also been used to forecast individual
outcomes. Researchers at the University of Texas, Houston,
developed three machine learning algorithms to predict
suicidality among individuals with mood disorders based on
their medical and sociodemographic data. All three models had
>50% accuracy in distinguishing someone as an individual who
had attempted to commit suicide from someone who had not
[10].

According to WHO, in 2015 [11], a child born in a low-income
country was 11 times more likely to die before reaching the age
of 5 years than a child born in a high-income country,
highlighting the crucial link between demographic and
socioeconomic factors influencing health outcomes. Our
hypothesis is as follows: a child’s likelihood to miss or not show
up on time for a vaccination visit is correlated with certain
demographic and background characteristics, such as
socioeconomic status, gender, maternal education, ethnicity,
and location. We have leveraged the power of “big data”
collected through a digital immunization registry to develop a
predictive analytics algorithm that tags children who are most
likely to miss their follow-up immunization visits. Through
statistical modeling, we can use immunization and demographic
data to classify whether a child showing up at the immunization
center is at high or low risk of missing subsequent immunization
visits. This research aimed to develop and validate the accuracy
of the predictive analytics algorithm in identifying children who
were likely to default from subsequent immunization visits for
any vaccine included in the routine immunization schedule. We
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also sought to determine which predictive analytics model has
the highest predictive accuracy. Although our research was
based on previous studies about behavioral predictive analytics
models, this will be the first to examine parental adherence to
routine childhood immunization schedules in developing
countries.

Methods

Study Population and Data Source
Vaccination data were abstracted from the Zindagi Mehfooz
Digital Immunization Registry, a mobile phone-based registry
program initially supported by the United Nations Foundation
and currently scaled in Sindh province with support from WHO.
The registry software was developed based on an android
platform, and it has various features, including web interface,
mobile phone-based data access and entry, radio frequency
identification and quick response code-based identification,
interactive short message service (SMS) reminders, electronic
decision support system that guides vaccinators for routine and
catch-up immunizations, and geographic information system
for tracking of vaccinators. The retrospective data subset had
49,439 records from 21 immunization centers in two cities
(Karachi, Sindh and Muzaffargarh, Punjab) collected from May
2012 to April 2016. We excluded a total of 1885 records from
the total dataset; among these, 326 records were excluded based
on invalid dates for age or immunizations and three were not
included because the children had died. Moreover, 1556 were
excluded because they only had measles-2 immunization record,
which is the last recommended immunization dose, and there
were no further follow-up visits.

The cohort of children included in the model had visited the
immunization center for one of the six routine immunization
visits. These children had complete records of the core variables
used in the analysis. During data extraction, transformation,
and cleaning stage, the information on demographic and
vaccine-related variables was obtained as raw data. The variables
for model prediction were used from routinely collected data
on the Expanded Program on Immunization (EPI) for
administering recommended immunizations to children aged
below 2 years. The variables that did not add any contextual
information (child’s name, address, and contact number) were
filtered out, whereas the rest were utilized in the model (Textbox
1). Figure 1 summarizes the main procedures of the study.

Data Analysis or Prediction Objective
Our primary objective was to validate the functionality of the
predictive analytics model through predicting the likelihood of
each child defaulting from subsequent immunization visits for
any vaccine included in the routine immunization schedule.

Modeling
We used support for recursive partitioning, support vector
machines (SVMs), random forests, and C-forest models in the
predictive analytics component. These models were encapsulated
in the predictive engine, which identified the most appropriate
method to use in a given case based on the following standard
measures: accuracy, precision (positive predictive value),
sensitivity, specificity, and negative predictive value.

Recursive Partitioning
Recursive partitioning is a statistical method that creates a binary
decision tree that classifies the classes of the target attribute by
recursively splitting the training data into subsets until a certain
criterion is met. The advantage of recursive partitioning
algorithm is its performance on larger datasets and flexibility
in prioritizing sensitivity and specificity. However, the
disadvantages include overfitting data and the lack of support
for continuous variables. Furthermore, the problem of overfitting
can be resolved with the use of tuning parameters [12].

Support Vector Machines
SVMs are based on a discriminative classification technique
that forms a tree-like graph of learned classification rules. This
model is extremely efficient for binomial target attributes, and
it performs well on datasets with a high number of attributes,
regardless of training data size. This study uses LibSVM
implementation [13,14].

Random Forests
Random forests are an extension of the decision tree model.
The random forest grows several trees against each classification
rule, each providing a classification of a target object. The
decision is made through voting. The benefit of using random
forests is their higher accuracy on larger datasets and their
capability to handle high-dimensional data without the need of
using the dimensionality reduction step. Random forests are
also good at locating outliers and scaling data to reduce error
due to bias. Breiman’s implementation [15,16] of the random
forest has been used in this study.

Textbox 1. List of predictors from the routinely collected immunization data

1. Gender of the child

2. Language spoken at the child’s house

3. Place of residence of the child (town or city)

4. Enrollment vaccine

5. Timeliness of vaccination

6. Enrolling staff (vaccinator or others)

7. Date of birth (accurate or estimated)

8. Age group of the child (<1 month, 1 month, 2 months, 3 months, 4 months, 6 months, 9 months, 1 year, 1.5 years, 2 years, 3 years, and >3 years)
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Figure 1. Procedures of the Study.

C-Forest
C-Forest is based on conditional inference trees, which estimate
a regression relationship by binary recursive partitioning in a
conditional inference framework. C-Forest can work on
multivariate target variables as well, which is not supported by
the recursive partitioning model by default. This study used an
algorithm proposed by Hothorn, Hornik [17].

Parameter Tuning
In this step, the default parameters of the algorithms were tuned
on different values until the most optimal setting, for example,
the values of the parameters that provide the best accuracy for
the model, had been reached. These parameters were different
for each algorithm; for example, in the random forest model,
we discovered that the default value for the number of trees to
grow (50) was insufficient. Thus, we tested different values and
chose 150 as the optimal value. Another example from the
recursive partitioning is complexity parameter in which we
determined the algorithm if the complexity parameter was set
to 0.01; then, a node should had split further only when the
goodness of fit was improved to at least 0.01 due to this split.
We learned that the default value (0.01) was appropriate and
changing it did not improve the results.

For parameter tuning, the training dataset was further split into
two parts: training set and validation set. Classifiers were trained
on training set and tuned upon the test set. Then, the final
accuracy was measured on the validation set in which the

outcome of the target variable was hidden from the classification
algorithm. Although parameter tuning could improve accuracy
(often extremely marginal), this was an optional step.

Evaluation
For evaluating the algorithm, we carried out bootstrapping to
generate training and validation dataset. To avoid affecting the
performance of the model, the validation dataset was not
included as part of the training set. The validation dataset was
generated as follows:

1. Extracting a sample of size equal to the dataset with
replacement

2. Storing all observations from the dataset for validation,
which were not selected during sampling

3. Repeating the sampling until the size of the validation set
is one-fourth (11,889) of the original dataset size (47,554).

This validation dataset set was neither used during training nor
for parameter tuning. It was only used for model evaluation.
Random sampling with replacement from the original sample
was performed until the training subsample equivalent to the
same size as the original sample was achieved. All the left-over
records, which were not selected in the training set, were placed
together in the validation subsample, as seen in Figure 2. The
test set was separated initially, and no parameter tuning was
performed on this set to ensure the simulation of real-world data
population. These test data were later used to test the accuracy
of the other parameters of each model by predicting the target
class.
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Figure 2. Derivation procedure for extracting training and validation cohort data. ZM: Zindagi Mehfooz.

Accuracy, which is defined as the percentage of total correct
predictions, is considered the first parameter in the evaluation
of any machine learning algorithm: accuracy = (TP + TN) / (TP

+ TN + FP + FN), where TP refers to all correct positive
classifications, TN indicates all correct negative classifications,
FP represents all false positive classifications, and FN refers to
all false negative classifications. The other parameters included
the following: sensitivity = TP / (TP + FN), specificity = TN /
(TN + FP), precision (positive predictive value) = TP / (TP + FP),
and negative predictive value = TN / (TN + FN). The rationale
behind using multiple parameters is that accuracy is not the de
facto model in every case; for example, in the case of predicting
immunization, we might prefer an algorithm with high
sensitivity over another algorithm with higher accuracy.
Furthermore, the overall prediction accuracy of all machine
learning models was measured using the area under the ROC
curve (C-statistic). ROC curve is a plot of true positive rate [TP

/ (TP + FN)] against the false positive rate [FP / (FP + TN)], and
AUC determines the predictive performance of the model.

Results

The baseline characteristics of the children in the test and
validation cohorts are shown in Table 1. Both subsets had similar
characteristics in terms of the selected variables. The mean
enrollment age was 12.9 weeks, and the highest enrollment was
carried out during the BCG vaccination visit. The baseline
demographic characteristics of the participants excluded from
the analysis (n=256) were not significantly different from those
included in the final analysis (N=47,554). Out of 11,889 cases

in the validation dataset, the actual number of children who
defaulted was 6155.

Figure 3 provides a visual illustration of the outcomes of all
models showing the number of true positives, true negatives,
false positives, and false negatives.

According to the four outcomes produced, the recursive
partitioning model predicted that 45.90% (5457/11,889) children
would default; among them, 83.43% (4553/5457) children did
default, which accounts for 83.4% of the total default population.
Likewise, it was predicted that 54.10% (6432/11,889) children
would return for the next vaccination; among them, 75.09%
(4830/6432) children did return. In the support vector machine
model, the total population of children who defaulted was 7310
(7310/11,889, 61.48%); among them, 5473 defaulted, which
accounts for 74.87% (5473/7310) of the total default population.
Likewise, it predicted that 38.51% (4579/11,889) children would
return for vaccination; among them, 85.11% (3897/4579) did
return. Meanwhile, the random forest model predicted that the
total number of children who defaulted will be 70.89%
(8428/11,889); among them, 69.34% (5844/8428) did default.
Likewise, it predicted that 29.11% (3461/11,889) children would
return for vaccination; among them, 91.01% (3150/3461) did
return. Lastly, the C-forest model predicted that 63.34%
(7530/11,889) would default; among them, 73.98% (5571/7530)
did default. Likewise, it predicted that 36.66% (4359/11,889)
children would return for vaccination; among them, 86.20%
(3775/4359) did return. These results produced accuracy rates
of approximately 78.9%, 78.8%, 75.6%, and 78.6% for recursive
partitioning, SVMs, random forests, and C-forest, respectively
(Table 2).
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Table 1. Baseline characteristics of the training and validation data cohorts.

Validation cohort (N=11,889)Training cohort (N=47,554)Characteristics of the participants

12.93 (15.9)12.92 (15.9)Enrollment age (weeks), mean (SD)

5049 (42.47)20,425 (42.95)Gender (female), n (%)

Enrollment vaccine, n (%)

6195 (52.11)24,744 (52.03)BCGa

2236 (18.81)8955 (18.83)Pentavalent-1

3458 (29.08)13,855 (29.14)Others

Language spoken, n (%)

208 (1.75)846 (1.78)Urdu

11,644 (97.94)46,561 (97.91)Unknown

37 (0.31)147 (0.31)Others

Place of residence (town), n (%)

10,296 (86.60)41,225 (86.69)Korangi

445 (3.74)1693 (3.56)Muzafargarh Town

1148 (9.66)4636 (9.75)Others

Place of residence (city), n (%)

11,334 (95.33)45,415 (95.50)Karachi

519 (4.37)1996 (4.20)Muzafargarh

36 (0.30)43 (0.30)Others

Timeliness of vaccinationb, n (%)

BCG

4 (0.07)16 (0.07)Early

4254 (69.61)17,126 (70.19)Late

1852 (30.32)7258 (29.75)Timely

Pentavalent-I

1 (0.02)11 (0.12)Early

2220 (99.78)8892 (99.73)Late

4 (0.18)13 (0.15)Timely

Pentavalent-II

2 (0.20)9 (0.22)Early

996 (99.20)4099 (99.15)Late

6 (0.60)26 (0.63)Timely

Pentavalent-III

3 (0.34)14 (0.38)Early

883 (99.21)4338 (99.31)Late

4 (0.45)11 (0.30)Timely

Measles-I

1 (0.09)6 (0.14)Early

1113 (99.02)4338 (99.20)Late

10 (0.89)29 (0.66)Timely

Age group

1386 (11.66)5465 (11.49)<1 month
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Validation cohort (N=11,889)Training cohort (N=47,554)Characteristics of the participants

8949 (75.27)35,972 (75.64)1-9 months

1554 (13.07)6117 (12.86)>1 year

aBCG: Bacillus Calmette–Guérin.
bExcludes records with invalid dates.

Figure 3. Flow diagram of all the study predictive models.

Table 2. Performance of the study models predicting the likelihood of defaulting from the follow-up immunization visits. Higher C-statistics results
in better algorithm discrimination.

95% CIArea under the curve C-statisticModel

0.784-0.7980.791Recursive partitioning

0.777-0.7920.786Support vector machines

0.742-0.7560.750Random forests

0.775-0.7890.782C-Forest

Overtime, through using artificial intelligence (AI), because
more data are captured, the system will continue to self-learn
from accumulated records, recognizing influential variables,
self-selecting statistical models, and continually upgrading itself
to achieve the highest predictive accuracy. However, the
recursive partitioning model outperforms the rest of he models
in terms of overall accuracy rates, but since the performance of
a classifier does not directly depend on the accuracy rate alone,

therefore, we analyzed other performance metrics, such as
sensitivity, specificity, positive predictive value, and negative
predictive value. Table 3 presents the outcomes for all the
performance metrics.

According to Table 3, the random forest model outperforms all
the other models with a sensitivity rate of 94.9%, although it
has the lowest accuracy rate. The random forest model predicted
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that majority of the population will default, that is, it has
predicted that (70.88% of the whole population, 8428/11,889)
will default. Moreover, it can correctly identify the maximum
number of children who defaulted (5844 out of 8428 children
actually defaulted). The random forest model’s high sensitivity
permits the recognition of almost all children who will not
receive subsequent vaccinations (94.9%). By contrast, the
recursive partitioning model produces the highest specificity at
84.2% and lowest sensitivity at 74.0%, indicating that it can
identify the maximum number of children who will adhere to
their vaccination schedule. The recursive partitioning model
produces moderate results for both sensitivity and specificity
at 74.0% and 84.2%, respectively, and it had the highest
accuracy rate at 78.9%. Figure 4 shows the individual
performance metrics for each model as illustrated in the ROC.

The random forest model correctly predicted 8994 cases,
yielding a sensitivity and specificity of 94.9% and 54.9%,
respectively. The C-forest model, SVMs, and recursive
partitioning models improved the prediction by achieving 352,
376, and 389, additional correct cases, respectively, over the
predictions made using the random forest model. However,
looking across the models, as accuracy of the models increased,
the sensitivity decreased from 94.9% (for random forest model)
to 74.0% (for recursive partitioning model), whereas specificity
went up from 54.9% (for random forest model) to 84.2% (for
recursive partitioning models). All models had a C-statistic of
0.750 or above, and the recursive partitioning model algorithm
had the highest statistic (AUC 0.791, 95% CI 0.784-0.798; Table
2).

Table 3. Performance metrics of all the study predictive models.

Negative predicted value (%)Precision (%)Specificity (%)Sensitivity (%)Accuracy (%)Model

75.183.484.274.078.9Recursive partitioning

85.174.968.088.978.8Support vector machines

91.069.354.994.975.6Random forests

86.674.065.890.578.6C-Forest

Figure 4. Receiver operating characteristic for all the study predictive models.
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Discussion

Principal Findings
We have demonstrated the feasibility and validity of the
predictive analytics algorithm in identifying children who were
likely to default from subsequent immunization visits, and the
algorithm yielded a 79.1% accuracy rate. This information could
empower policy makers, immunization programs, and
vaccinators to reduce dropouts and improve immunization
coverage, timeliness, and equity through the targeted use of
evidenced-based interventions at an individual or community
level. Reduced immunization coverage and losses to follow-up
do not allow communities to fully take advantage of the benefit
of routine childhood immunization programs.

Because the approach is becoming a topic of interest, results
from initial formative studies on the use of predictive analytics
in a variety of settings are now being assessed. Our findings are
in accordance with those reported from other studies that have
used AI technology within the health domain to predict future
outcomes. The success rates of predictions from other studies
are similar; for example, a model conducting risk profiling of
patients who are likely to develop chronic kidney disease using
gradient tree-based algorithm had an AUC statistic of 0.871,
and statistically significant (P<.001) differences were observed
in disease outcomes in the high-, medium-, and low-risk groups
[18]. Similarly, in another study that predicted cardiovascular
risk, the predictions produced by the machine learning algorithm
using a variety of models were better (AUC 0.745, 95% CI
0.739-0.750) than those produced by the existing risk prediction
algorithms [19]. These findings corroborate the potential of
predictive analytics to revolutionize the current practices of
preventing disease and promoting better health care.

This formative study tested the feasibility of an array of
statistical models to make predictions showing the variability
of results depending upon our outcome of interest. The random
forest model had the best performance with results expected to
further improve as more data is collected because the system
learns overtime as a result of machine learning. Other studies
that have used different predictive models also reinforce the
finding that one of the models is typically the highest achieving
model compared with others depending on the outcome of
interest [19]. The selection of variables for the predictive model
was limited to the information collected during routine
immunizations. Machine learning will also proactively interpret
and identify new data patterns in routinely collected data,
significantly improving the accuracy of individual risk
classification over time. However, collecting additional
variables, including household income, ethnicity, maternal
tetanus vaccination status, and maternal and paternal education
status, may further enhance the predictive accuracy.

Operationally, developing countries are in the process of using
digital immunization registries (DIRs), which provide an
extremely rich source of patient information [20], creating an
opportunity for effectively using machine learning and predictive
analytics to identify children who are most likely to default
from their immunization schedule. From a technical standpoint,
predictive analytics has high interoperability, which helps it to

be easily linked to any DIR or electronic health record to
strengthen the health systems and empower the vaccinators.
This feature further enhances the utility of this module given
the high appeal for interoperability to enable cooperative
progress in public health through linking heterogeneous data
[21].

To further enhance the ease of use, the front end of the module
is designed for nonprogrammers, and it does not require
technologically skilled users, making it easy to implement and
sustain in low-resource settings. From an operational
perspective, the utilization of predictive analytics does not
require large investments in resources or trainings. With the
expanding presence of DIRs, the technological platform for
large-scale implementation is already in place, and the user
interface can be tailored to meet local requirements. The
self-learning algorithm quickly adapts to context, adjusting
variables, models, and standard measures as needed.

Financially, the returns to be gained from optimal resource
allocation and reduced expenditure on vaccine-preventable
diseases are substantially greater than the set-up cost, ensuring
a high return on investment per dollar spent. Although a
high-dropout may mean that a large proportion of the population
must be targeted at the start, the offset in the required funding
may be substantial for LMICs. Other clinical studies that used
AI for predicting future outcomes also highlight the reduction
in economic burden through early detection and treatment of
disease [22]. The health department and local government could
ultimately benefit through savings incurred owing to the
allocation of resources to population segments that require them
the most. Wasting of the limited resources of the government
could be reduced if not eliminated. Furthermore, the health
department could make substantial savings in the treatment
costs for vaccine-preventable diseases.

In addition, machine learning techniques have also been proven
to improve resource allocation decisions. For instance, a study
examining patient admission decisions in tertiary care hospitals
has revealed that a machine learning Bayesian model could lead
to more efficient resource allocation decisions when deciding
which patients to admit in the hospital. Similarly, in our context,
predictive analytics can identify children at high risk for
overburdened frontline health workers and as a result,
evidence-based interventions, such as center-based counseling,
out-reach services, and repeated SMS reminders, can be targeted
toward this cohort leading to optimal resource allocation.

Our idea constitutes an unconventional approach for improving
the timeliness of routine immunization and reducing missed
opportunities; in an era where a collection of massive amounts
of reliable data has become cheap and easy, predictive analytics
is considered a cutting-edge innovation with only limited
application in the field of health service delivery despite its
strong impact and potential. Machine learning, particularly deep
learning, is now being used to predict the patients’ chances of
relapse, early deterioration, and developing diseases, such as
cancer and automated diagnosis of eye disease, as recently
shown by Google. However, in the field of immunization,
predictive modeling is a novel idea, and its potential in
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revolutionizing immunization service delivery is yet to be
identified.

To achieve the key goal of the global vaccine action plan
2011-2020, for example, meet the 90% national vaccination
coverage and 80% coverage rate for all vaccines by 2020 in
every district, we need to focus on strategies that reduce
dropouts and expand coverage. As presented in this paper,
predictive analytics can help in the identification of children
who are likely to default or dropout from the course of the
immunization schedule; therefore, communities where
incomplete immunization rates are prevalent will benefit the
most from targeted concentration of efforts promoting the goal
of universal health equity. Although this paper provides a
plausible causal pathway in which the information gained
through this model can lead to health system improvement,
more rigorous evaluations must be conducted to fully determine
the programmatic effectiveness of this model from an
implementation perspective.

Limitations
The limitation of our model was the exclusion of the records
containing invalid dates for age or immunizations. Although
the imputation method was used to deal with invalid or missing
data in the machine learning models because this was a
feasibility study, the data models were utilized only on complete
records. Furthermore, it is relevant to mention that we have

evaluated the predictive analytics algorithm on only one
outcome, particularly the likelihood of a child to default from
subsequent immunization visits. There are other parameters in
which the algorithm could be evaluated, such as the likelihood
of completing the full immunization schedule. However, to keep
the approach simple, other approaches were considered beyond
the scope of this study, and this must be further evaluated. The
predictive analytics will be beneficial for communities with
high access and underutilized services because the model is
based on initial contact with vaccinator or health care worker,
and communities with low access may only benefit indirectly
when herd immunity is achieved. The other limitation of the
study is the generalizability of data to other populations.
Developing this model for other populations would require
recalibration and adjustment to account for other disparities as
well as the inclusion of relevant prediction variables.

Conclusion
The expansion of DIRs in lower- and middle-income countries
is creating a unique opportunity to analyze and interpret data
to generate real-time actionable insight in expanding
immunization services and coverage. This feasibility study
showed that predictive analytics can accurately identify
individual children who are likely to default from subsequent
immunization visits. Predictive analytics can strengthen
immunization programs by facilitating the targeted
implementation of interventions aimed at reducing the dropouts.
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