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Abstract

Background: Health care and public health professionals rely on accurate, real-time monitoring of infectious diseases for
outbreak preparedness and response. Early detection of outbreaks is improved by systems that are comprehensive and specific
with respect to the pathogen but are rapid in reporting the data. It has proven difficult to implement these requirements on a large
scale while maintaining patient privacy.

Objective: The aim of this study was to demonstrate the automated export, aggregation, and analysis of infectious disease
diagnostic test results from clinical laboratories across the United States in a manner that protects patient confidentiality. We
hypothesized that such a system could aid in monitoring the seasonal occurrence of respiratory pathogens and may have advantages
with regard to scope and ease of reporting compared with existing surveillance systems.

Methods: We describe a system, BioFire Syndromic Trends, for rapid disease reporting that is syndrome-based but
pathogen-specific. Deidentified patient test results from the BioFire FilmArray multiplex molecular diagnostic system are sent
directly to a cloud database. Summaries of these data are displayed in near real time on the Syndromic Trends public website.
We studied this dataset for the prevalence, seasonality, and coinfections of the 20 respiratory pathogens detected in over 362,000
patient samples acquired as a standard-of-care testing over the last 4 years from 20 clinical laboratories in the United States.

Results: The majority of pathogens show influenza-like seasonality, rhinovirus has fall and spring peaks, and adenovirus and
the bacterial pathogens show constant detection over the year. The dataset can also be considered in an ecological framework;
the viruses and bacteria detected by this test are parasites of a host (the human patient). Interestingly, the rate of pathogen
codetections, on average 7.94% (28,741/362,101), matches predictions based on the relative abundance of organisms present.

Conclusions: Syndromic Trends preserves patient privacy by removing or obfuscating patient identifiers while still collecting
much useful information about the bacterial and viral pathogens that they harbor. Test results are uploaded to the database within
a few hours of completion compared with delays of up to 10 days for other diagnostic-based reporting systems. This work shows
that the barriers to establishing epidemiology systems are no longer scientific and technical but rather administrative, involving
questions of patient privacy and data ownership. We have demonstrated here that these barriers can be overcome. This first look
at the resulting data stream suggests that Syndromic Trends will be able to provide high-resolution analysis of circulating respiratory
pathogens and may aid in the detection of new outbreaks.

(JMIR Public Health Surveill 2018;4(3):e59)   doi:10.2196/publichealth.9876

KEYWORDS
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Introduction

Surveillance Landscape
The availability of real-time surveillance data that can monitor
the spread of infectious diseases benefits public health [1-3].
At present, tracking of respiratory or foodborne outbreaks relies
on a variety of methods ranging from automated real-time
electronic reporting to manual Web entry of test results. Systems
such as the Centers for Disease Control and Prevention’s (CDC)
FluView [4], National Respiratory and Enteric Virus
Surveillance Systems (NREVSS) [5], National Electronic
Disease Surveillance System [6], Global Emerging Infections
Surveillance (GEIS) [7], and others, although Web-based, still
require manual entry of data from laboratories, resulting in data
that are often incomplete or not current.

Syndrome-based surveillance systems [8-10] include BioSense
(extraction of symptomatic data from electronic health records

[11]), Google Flu (tracking of internet search queries [12] but
recently discontinued [13]), and Flu Near You (voluntary
reporting [14]). Additionally, numerous next generation,
syndromic surveillance systems, for example, pharmacy sales
records [15,16], Twitter conversations [17,18], and Wikipedia
hits [19,20] have come online in the past 5 years. However,
these systems cannot report the specific pathogen causing an
increase in a particular set of symptoms. Finally, there are more
localized efforts such as GermWatch in Utah [21] and the
Electronic Clinical Laboratory Reporting System (ECLRS) in
New York [22] that draw from hospital information systems
(HISs) and laboratory information systems (LISs). This disparity
in technologies and data collection methods results in incomplete
surveillance.

Comprehensive Testing
Comprehensive and uniform diagnostic test data will aid in the
identification of potential outbreaks. A combination of broad
respiratory pathogen testing and an internal electronic
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surveillance system enabled the rapid dissemination of data
across the largest health care system in New York, the North
Shore-LIJ Health System (now Northwell Health), during the
influenza A H1N1-2009 pandemic in the New York City area.
Pathogen-specific molecular testing permitted rapid (1)
notification to state epidemiologists, (2) tracking of the virus
so that health care resources could be managed effectively, and
(3) evaluation of influenza diagnostics [23,24]. Today, with the
threat of emerging pathogens such as Middle East respiratory
syndrome coronavirus (CoV), avian influenza, enterovirus (EV)
D68, and Ebola virus, real-time surveillance programs are
critical [25,26].

It is not always possible to accurately diagnose the causative
agents of most infectious diseases from symptoms alone because
of overlapping clinical presentation. Thus, to achieve maximal
utility, infectious disease surveillance systems should move
beyond syndrome-based reporting and be pathogen-specific and
comprehensive, reporting on as many of the common pathogens
for a particular syndrome as possible. Sensitive and specific
automated molecular diagnostic systems that detect up to 4
different pathogens in a single sample have been available from
in vitro diagnostic (IVD) manufacturers for some time [27,28].
However, adoption of IVD platforms with broad multiplexing
capability has become widespread only in the last few years.
Commercially available systems that can detect most of the
known etiological agents for respiratory, gastrointestinal (GI),
and other multipathogen syndromes [29-31] include the BioFire
(Salt Lake City, UT) FilmArray System ([32]; Multimedia
Appendix 1); the GenMark (Carlsbad, CA) eSensor XT-8 [33]
and ePlex [34]; and the Luminex (Austin, TX) xTAG [35],
nxTag [36], and Verigene systems [37].

Sharing of Patient Data
Multianalyte diagnostic tests provide the raw data needed for
real-time pathogen-specific syndromic surveillance, but there
remain a number of obstacles to sharing these results (reviewed
in [38]). The obstacles largely center on information privacy
and network security. A real-time surveillance system using
diagnostic test results requires safeguards for protected health
information (PHI). Medical records and devices have become
attractive targets for cyber attackers in recent years [39], which
has made hospitals and clinics reluctant to connect their local
area networks (LANs) to the internet. Releasing patient test
results requires the removal of PHI or authorization from the
patient. Studies have shown that deidentification of patient data
is not as simple as removing all specific identifiers because in
the age of big data, under the right circumstances, it is possible
to reassociate patients and their data using publicly available
information [40-43].

We describe here the implementation of a real-time
pathogen-specific surveillance system that overcomes the PHI
concerns noted above. BioFire Syndromic Trends deidentifies,
aggregates, and exports test results from FilmArray Instruments
in use in US clinical laboratories [44]. Although data from all
commercially available FilmArray panels [45] are exported to
the Trend database, we focus here on the Respiratory Panel (RP)
that can detect 17 viral (adenovirus, Adeno; coronavirus, CoV
[OC43, 229E, NL63, HKU-1]; human metapneumovirus, hMPV;

human rhinovirus/enterovirus, HRV/EV; influenza A, Flu A
[subtyping H1N1, 2009 H1N1, H3N2]; influenza B, Flu B;
parainfluenza viruses, PIVs [1-4]; and respiratory syncytial
virus, RSV) and three bacterial (Bordetella pertussis, Chlamydia
pneumoniae, and Mycoplasma pneumoniae) pathogens
[32,46,47].

With more than 362,000 patient results for the FilmArray RP
test alone, the Trend database has many of the properties
associated with big data as it applies to infectious disease [48].
After describing how the dataset can be cleaned of nonpatient
tests, we make some observations on the seasonality of the
different respiratory pathogens and the occurrence of codetection
(more than one organism is detected in one test). Relatively
little is known about rates of multiple concurrent respiratory
infections and their overall impact on the health of the patient.
Finally, we apply the ecological concept of species diversity
[49] to observe a correlation between the abundance of each
pathogen and the rate at which codetections (more than one
positive result per test) occur in the tested population.

Methods

Origin of Syndromic Trends
FilmArray Trend was originally implemented to provide BioFire
customers with an up-to-date view of the respiratory and GI
pathogens circulating at their institution. From the perspective
of an IVD manufacturer, the most uniform and thus the simplest
method of accomplishing this is to follow a bottom-out approach
to data export in which the FilmArray sends data to a cloud
database managed by the manufacturer, and Web views of these
data are available by clinicians at the hospital that generated
the data (solid lines in Figure 1) rather than a top-out approach
(dashed lines in Figure 1) in which the data are extracted from
the hospital information system. This method provides the
clinical institution with a tool to perform pathogen-specific
surveillance for very little cost.

Patient Privacy When Exporting FilmArray Test
Results
The Expert Determination study of the Trend data export
algorithm (Multimedia Appendix 2) established that FilmArray
patient results have been adequately deidentified. Therefore, a
data use agreement (DUA), rather than business associates
agreements (see Multimedia Appendix 2 for the difference
between the two agreements) could be executed with each of
the collaborating institutions (Multimedia Appendix 1). The
DUAs define for the clinical laboratory how BioFire will
manage and make use of the Trend data. The Trend client
software residing on the FilmArray computer queries the
FilmArray test result local database and exports the results to
an Amazon Web Services database (Multimedia Appendix 1).
The Trend client software performs deidentification on the
FilmArray computer before export, as detailed in Multimedia
Appendix 2. Health care providers (HCPs) are granted access
to their institution’s Trend data by the laboratory director. As
Web access to view the data is restricted to the local site,
deidentification of geographic indicators is not required.
However, in the implementation of the public Trend website,
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which presents FilmArray test results from around the United
States, we have further aggregated the data with respect to
geographic origin and obfuscated the date of the test
(Multimedia Appendix 2). As only deidentified data are exported
from the clinical institutions, no PHI is sent to or stored on the
cloud server.

Test Utilization Rate and Pathogen Detection Rate
The FilmArray RP test utilization rate (TUR) metric is defined
as the non-normalized number of RP patient test results
generated each week across the Trend sites (computed as a
centered 3-week moving average). To calculate the pathogen
detection rate (as displayed in Figure 2 [second data view] and
on the Trend website), we compute the rate for each organism
at each institution as a centered 3-week moving average. To
adjust for the capacity differences between sites, a national
aggregate is calculated as the unweighted average of individual
site rates. Only data from sites contributing more than 30 tests
per week is included to avoid noise from small numbers of tests.
Because the calculation of pathogen detection rate includes
results from patients with multiple detections, the detection rate
for all organisms can, in theory, add up to greater than one. In
practice, this does not occur.

Comparison With the Centers for Disease Control and
Prevention Influenza-Observed Rate of Detection
The CDC FluView rate of Flu A and Flu B detections, as well
as the reported incidence of weighted influenza-like illness
(ILI), are taken from the CDC website [4]. Only the CDC data
from the Department of Health and Human Services regions

that contained Trend pilot sites (Multimedia Appendix 1) were
used for calculating the rate of influenza detections.

Calculation of Codetection Rates and Related Measures
Pathogen codetections are defined as FilmArray tests in which
two or three organisms are detected. We also calculated two
other measures that relate to codetections: the circulating
pathogen number and the measure of interspecific encounter
(MIE). Both of these time series measures are calculated for
each site and week, a centered 5-week moving average is
computed, and then an unweighted average of all sites is used
to create a national aggregate. The 5-week moving average is
used to reduce noise because of small numbers of samples within
a week at some sites.

More specifically, the circulating pathogen number is simply
the count of the unique organisms detected at a site during a
1-week period. MIE is calculated from the frequencies of each
organism at a site (number of positive test results for an
organism divided by the number of FilmArray tests performed
at that site). To reduce noise, we only include site data if more
than 10 FilmArray tests were performed in that week. If P1...PN

are the percentage detection of the N different organisms
circulating at a single site over a single week, then MIE is
defined as shown in equation 1:

Conceptually, MIE is an attempt to estimate the likelihood that
a patient infected with one organism may be infected with
another unique organism circulating in the population at a given
period in time, resulting in a coinfection.

Figure 1. Schema for export of in vitro diagnostic (IVD) test results to an external database. Bottom-Out and Top-Out approaches for data export are
indicated by solid and dashed lines, respectively. Some institutions have developed their own systems for aggregating and displaying infectious disease
data (indicated by internal website). HIS: hospital information system; LIS: laboratory information system; CDC: Centers for Disease Control and
Prevention; NREVSS: National Respiratory and Enteric Virus Surveillance Systems.
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Figure 2. Detection of respiratory panel (RP) organisms over time across all sites. Detection of FilmArray RP pathogens in the Trend dataset displayed
as stacked area graphs. All data views have the same time period (July 2013 through July 2017). (First data view) Count of each organism. The test
utilization rate (TUR) metric (purple line, units are FilmArray RP tests performed) and count of FilmArray RP tests that are negative (white are between
pathogen count and TUR) are indicated. The y-axis values are not indicated as this is considered proprietary information. (Second data view) Pathogen
detection rates for all organisms. (Third data view) Pathogen detection rates for the subset of organisms that show seasonality (see Results and the
legend for the list of organisms). (Fourth data view) Human rhinovirus (HRV) or enterovirus (EV) detection rates. The CDC weighted influenza-like
illness (ILI; scaled up tenfold to be visible against the pathogen data) is indicated (black line) in the third and fourth data views. Organisms follow the
same color scheme in all panels; the order of organisms in the legend (down then across) matches that of the stacked area graph top to bottom.
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Results

Sending FilmArray Data Directly to the Cloud
The most general and efficient way to aggregate test results
from the FilmArray instrument in a clinical laboratory is to
follow a bottom-out approach to data export (Figure 1;
Multimedia Appendix 1). In this scheme, the FilmArray
instrument (at the bottom of the information hierarchy) directly
sends data via the internet to a single cloud database where it
can be viewed by HCPs at the originating institution. This data
export pathway contrasts with a top-out approach (Figure 1) in
which diagnostic test results are pushed from the instrument up
through the LIS, to the HIS (at the top of the information
hierarchy) and, finally, a subset of this information is forwarded
to cloud-based databases.

Initial testing of the Trend export mechanism was performed
in collaboration with the clinical laboratories of the Medical
University of South Carolina. This trial allowed us to develop
and test auto-export functions and deidentification protocols
for the Trend software. The deidentification requirement of the
Health Insurance Portability and Accountability Act (HIPAA)
of 1996, specifically the Safe Harbor provision, requires the
removal of 18 enumerated variables that could directly or
indirectly identify an individual [50]. In accord with this
requirement, the first stage study did not export test identifiers
or free-form text fields and only returned the year of the test.
The initial dataset provided low-resolution information but was
a useful platform to evaluate the proposed system. Further
development to enable export of higher resolution data required
the design of routines that would adhere to an alternative HIPAA
deidentification strategy, namely, the Expert Determination
approach, which requires a risk assessment demonstrating that
the chance of reidentifying an individual is sufficiently small
[51]. The Expert Determination process identified and made
recommendations for fields that could facilitate disclosure of
PHI (Multimedia Appendix 2). A summary of the Expert
Determination results detailing the risk of Trend data in regard
to replicability, availability, and distinguishability is shown in
Multimedia Appendix 2.

All sites (Multimedia Appendix 1) submitted the Trend project
for review by their local institutional review board; all but one
of the 20 review boards deemed the project exempt because of
the absence of PHI export. Thus, the security requirements for
the database and the controls necessary for storage and transport
of deidentified data are significantly reduced.

Following the protocol established by Expert Determination
review, the Trend software delays the export of results until the
number of tests queued for export exceeds a minimum threshold
for each type of FilmArray panel. In practice, this results in an
average time to export of less than 2 hours from each site that
has multiple instruments. A total of 99.11% (74,912/75,585) of
the test results exported automatically occurred within 24 hours
of test completion.

Characteristics of the FilmArray Sites Used in the
Trend Pilot Study
The 20 sites contributing to the Trend pilot project (Multimedia
Appendix 1) have the same average number of instruments; six
(range: 1-22) as for all US FilmArray customers. The Trend
pilot sites have been using the FilmArray RP test for an average
of 3.8 years (range: 1-6) before June 2017. The size of the
institutions participating ranges from 300 to 6400 beds, with
the majority being large hospitals, and health care networks
with an average of 1100 beds. Six (30%, 6/20) sites are pediatric
hospitals, and one is a reference laboratory. Fifteen (75%, 15/20)
of the sites have uploaded archived FilmArray RP test results
to the Trend database, with eight (40%, 8/20) reporting results
dating back to 2012. Unless stated otherwise, the data presented
here cover the period from July 2013 to July 2017.

The algorithm used to diagnose the cause of respiratory disease
varies by site. More than half of the Trend sites do not enforce
an institutional respiratory testing protocol and, even within
sites that have a required protocol, some discretionary use of
FilmArray RP is allowed. Without detailed records from each
institution’s HIS, it is not possible to determine whether the
FilmArray RP was used as a front line test or as a reflex test
(typically following a negative result for influenza and RSV).

Cleaning Nonpatient Test Results From the Trend
Database
To determine the prevalence of respiratory pathogens, we needed
to expunge the Trend database of test results that are not derived
from clinical patient samples. Nonpatient results come from a
variety of sources including verification testing, routine quality
control (QC), and proficiency testing (PT; Multimedia Appendix
3). Despite this complexity, the majority of nonpatient test
results can be identified and distinguished from the
patient-derived data because of the high number of positive
organism calls in a single test and because of the temporal
aspects of verification and control testing (Multimedia Appendix
3 shows one such identification method). QC tests are estimated
to account for half of all FilmArray RP results in which more
than three organisms are detected. In addition to the exclusion
of tests temporally associated with validation events, all results
with four or more positives were removed from further analysis
(approximately 1% of the filtered total). This includes the small
fraction of test results with exactly four organisms (Multimedia
Appendix 3, Tests after event removal column) because the
minority are derived from patient testing.

Detection of Respiratory Pathogens in Trend Samples
From 2013 to 2017
The detection counts and pathogen detection rates derived from
the Trend dataset for each organism in the FilmArray RP are
shown in Figure 2. Other views of these data, including percent
detection of individual organisms or combinations of organisms,
are available on the BioFire Syndromic Trends public website
[44]. The FilmArray RP TUR (see Methods) and the individual
organism detection counts increased over this period because
the Trend clinical sites increased their utilization of the
FilmArray RP tests (Figure 2, first data view). Seasonal
fluctuations can also be seen within this growth pattern, with
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use increasing up to four-fold each winter when compared with
the previous summer. HRV/EV, the most common pathogen
detected group, is identified in approximately one-fourth of all
samples tested each year (Multimedia Appendix 4). Other
pathogens detected in approximately one-tenth of the samples
include RSV, the PIVs, ADV, influenza, and hMPV. M
pneumoniae, C pneumonia, and B pertussis are detected in a
small percentage (one-fiftieth) of all samples. The average
percentage of each organism is relatively constant over the 4
years of data in the Trend database (Multimedia Appendix 5).

The pathogens’ seasonal variability measured by percent
detection can be classified into at least three groups. Group 1:
the majority of organisms follow the classical respiratory season
(October-March) and increase by more than ten-fold above their
baseline detection rate (Figure 2, third data view). These include
the CoVs, Flu A, Flu B, hMPV, the PIVs, and RSV (PIV3 is a
slight exception to this rule in that it peaks in the summer
months and has a winter peak that is only detected regionally;
data not shown). Within this group, all but five viruses
demonstrate significant fluctuations from year to year; Flu B,
hMPV, OC43, and PIV3 and RSV experience relatively
consistent annual peaks. Group 2: HRV/EV is in a class by itself
in that it is detected in a high percentage of tests over time
(minimum of one-tenth of tests in winter) and experiences
moderate peaks of two- to three-fold outside the respiratory
season baseline in the early fall and spring (Figure 2, fourth
data view). Group 3: the bacteria and Adeno are present at a
relatively constant rate (Multimedia Appendix 6). The CDC
FluView reported rate of ILI tracks moderately well with the

group 1 organisms (cross-correlation of 0.85) and not with
HRV/EV or with Adeno and the bacteria.

Comparison of Trend With Centers for Disease
Control and Prevention Measures of Influenza
The CDC FluView network [4] gathers information about
influenza prevalence from a large number of public health and
clinical laboratories in the United States. FluView is considered
the gold standard for these measures. We compared the Trend
detection rates for Flu A (all subtypes) plus Flu B with the
FluView Influenza (A and B) from September 2015 to July
2017 (Figure 3). The analysis was restricted to this time period
because of a change in the CDC’s reporting of flu prevalence
in the fall of 2015. A cross-correlation of 0.974 was observed
between the Trend Flu A or B percent detection and FluView
reported influenza prevalence. Notably, the onset, peak, and
duration of the influenza season coincide between the two
measures.

Respiratory Panel Codetections
We found that approximately 38,000 FilmArray RP tests in the
Trend dataset had two or three codetections. The most common
codetections observed are those involving HRV/EV, which is
the pathogen with the overall highest rate of detections (Figure
4, first data view). The codetection rate within each organism
varies widely (from one-tenth to one-half; Figure 4, second data
view). Although an additional pathogen was detected in half of
the Adeno and CoV positive samples, codetections were
observed in only one-tenth of the samples positive for either
Flu A or Flu B (Figure 4, second data view).

Figure 3. Trend influenza detection rate compared with Centers for Disease and Prevention’s (CDC) influenza activity. Percent of combined FilmArray
Flu A (all subtypes) and Flu B detections (blue line) and CDC-reported influenza prevalence (black lines). CDC data are aggregated only from regions
with participating Trend sites.
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Figure 4. Detection rates for all organisms compared with codetections. Percent total positive detections for each organism in the respiratory panel
(RP) Trend dataset is presented in stacked bars, showing the rate of detection of a single organism (first data view, blue) and those involved in a
codetection (first data view, black). Data are calculated for each site during the period from July 2013 to July 2017, when available, and then aggregated.
(Second data view) Percentage of each organism involved in a codetection is shown. Bars are colored by pathogen family (CoV, purple; bacteria, blue;
PIVs, green; Flu A, yellow).
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Figure 5. Seasonal variation in pathogen diversity and codetections. (First data view) Average circulating pathogen number (black line) and one SD
computed across all Trend sites (gray area). (Second data view) Rate of codetections in the respiratory panel (RP) Trend dataset (gray bars, left axis),
the measure of interspecific encounter (MIE) index (purple line, right axis), and MIE CIs (shaded purple area).

Trend data have high temporal, spatial, and organism-specific
resolution. These three properties allow for a novel evaluation
of codetections. The observed rates of codetections should be
influenced by the number of circulating pathogens detected by
the FilmArray RP test at a particular site. Figure 5, first data
view, shows the average number of unique organisms detected
at each site in a given week (see Methods: Calculation of
codetection rates). This number fluctuates from a summer low
of four to a winter high of 11 pathogens. Figure 5, second data
view (gray bars), shows that the total rate of organism

codetections in the Trend dataset fluctuates annually, with peak
rates occurring in the winter months. The average rates have
been as high as one in 8 tests in the winter of 2016 and as low
as one in 50 in the summer of 2014.

From the Trend data, an MIE can be calculated as the probability
of a codetection, weighted by the prevalence of each circulating
pathogen at a site. Although the value of the MIE metric is
higher than the actual codetection rate, it correlates well (Figure
5, second data view, purple line compared with the gray bars
has a cross-correlation of 0.9488 at a lag of 0). The magnitude
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adjustment between MIE and the observed codetections is
calculated by the slope of the linear regression of the two metrics

(Multimedia Appendix 7) and has a value of 4.05 (R2=.9003).

Discussion

Properties of Trend Data
This study describes BioFire Syndromic Trends, a new system
for real-time reporting of widespread pathogen-specific
syndromic data. Even in its pilot phase, the Trend database
already has many of the features that characterize big data [48].
The Vs of big data—volume (amount), velocity (speed of
acquisition), veracity (accuracy), variety (diversity of
information), and value (utility)—should be kept in mind as we
consider the properties of Trend in clinical and public health
settings.

The Trend RP dataset is growing at an average rate of >400,000
pathogen test results per month (>20,000 patient tests with 20
pathogens). Connecting the first 20 clinical sites has provided
insight into the principal concerns that will be raised by the
legal, information technology, and administrative departments
of the HCPs that house FilmArray instruments. It should be
possible, therefore, to expand the Trend installed base by 10-
to 20-fold over the next few years. Similarly, the existence of
Trend should enable other IVD manufacturers to build their
own Trend-like systems with greater acceptance on the part of
their customers, thereby allowing a more global and
comprehensive surveillance perspective.

The data in Figure 2 are similar to previous demonstrations of
the seasonality associated with different respiratory viruses
[52-55]. What is novel is that these data are generated
automatically, on site, and in close to real time compared with
other surveillance systems. Nearly all of the test results are
exported to the Trend database within 24 hours of being
generated. As part of the deidentification protocol, sequential
FilmArray RP tests of the same type are put into the same time
bin. This has the effect that test results are exported faster during
periods of peak use, such as during the peak of the respiratory
season or during an outbreak. Trend should be instrumental at
a local level to determine the start of a respiratory season; many
hospitals make significant changes to their operations based on
this event; however, at present, data collection to track the
respiratory season is often slow and manual, or semiautomated
at best.

The key to implementing Trend clinical sites was to demonstrate
that FilmArray test results can be exported without the risk of
breaching PHI confidentiality either directly or through some
combination of the data that were exported. Trend successfully
used the Expert Determination process as prescribed by the
HIPAA guidelines (see Multimedia Appendix 2), which greatly
simplified the data sharing agreement between BioFire
Diagnostics and the clinical site and allowed HCPs to use Trend
without risk of inadvertently disclosing PHI.

The software architecture underlying the Trend system is both
simple and secure: (1) no changes to the institutional firewall
or LAN are needed; (2) the Trend database cannot reach back
and query the FilmArray computer because of the institutional

firewall, which is set to outbound data only; and (3) Trend
software can only submit data to the cloud database and cannot
query the database (Multimedia Appendix 1). Yet, despite this
security, authorized users of the Trend database can mine the
deidentified data to look for novel patterns in respiratory
pathogen epidemiology.

The Costs and Benefits of Bottom-Out Data Export
System
The goal of an epidemiological surveillance network is to infer
which infectious diseases are circulating in the general
population based on testing a sample of patients [56]. Different
surveillance systems have different biases in their data; biases
that perturb the ability to predict true population prevalence.

Although the removal of all PHI has great benefits in terms of
implementation, it also has several shortcomings that complicate
interpretation of the data. First, Trend cannot account for the
variability in the diagnostic testing algorithms applied to the
selection of samples to be tested by the FilmArray instruments.
During the respiratory season, HCPs may prescreen patients
with other diagnostic tests including rapid antigen or molecular
assays for influenza and RSV or commercial and
laboratory-developed molecular tests for a mix of other
respiratory pathogens. Depending upon the sensitivity of these
upstream tests, more than half of influenza and RSV for the
subset of the patients screened would be excluded from the
Trend dataset if the front line test is positive. This testing
protocol may skew the actual prevalence of not only influenza
and RSV but all other individual respiratory pathogens and
coinfections detected by the FilmArray. In some institutions,
testing is reserved for hospitalized patients and others at risk
for developing complications of respiratory tract infections,
including the very young, very old, and immunocompromised
patients. So Trend data may represent a less healthy patient
population and not necessarily general community prevalence.
Conversely, there are sites that perform a significant number of
tests for the outpatient setting. This may create variability among
the clinical sites’ percent positivity and introduces a challenge
to comparing pathogen intensity between sites.

The uncertainties surrounding the testing algorithm and the
precise patient population tested should not interfere with
determining the onset, peak, and duration of the pathogen season
at each institution. These limitations on the data are likely to
be common among almost all current surveillance systems for
similar reasons. Given these concerns, the agreement between
the percent positivity of Flu A or B as determined by Trend and
the percent positivity reported by CDC FluView Influenza is
striking (Figure 3), supporting the validity and utility of the
Trend data.

The second source of concern in the Trend dataset is a
consequence of the removal of sample identification such that
we cannot directly determine whether the sample was from a
patient or was a nonclinical sample (verification test, QC, or
PT) and should be removed from further epidemiological
analysis. We estimate that nonpatient testing makes up
approximately one-fiftieth of the total FilmArray RP tests.
Automated detection algorithms remove roughly one in 25 of
the total RP tests, including approximately half of the nonclinical
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samples. With the exception of the four positive tests, the
clinical samples removed by filtering should be a random
sampling of all patient tests. The remaining nominal fraction
of nonpatient tests has essentially no impact on the Trend
evaluation of pathogen prevalence, but they do make it more
difficult to perform high-resolution analysis of pathogen
codetections. This is especially true for codetections of low
prevalence organisms where QC positives are likely to be more
common than real positives. Future updates to the FilmArray
software will simplify the process by which the instrument
operator can tag tests of nonpatient samples, thereby largely
eliminating the need to filter such test results from the Trend
database before analysis.

The Seasonality and Coinfections of Respiratory
Pathogens
The total positivity rate of the FilmArray RP test varies from a
low of approximately one-third of tests in the summer months
to a high of three-fourths of the tests in December and January.
Figure 5, second data view, shows that the average number of
different circulating pathogens at a single institution can vary
from eight up to 11 during the winter months. Even during the
peak periods of ILI, many respiratory infections are due to other
viruses (Figure 2, third data view) that can present clinically in
a similar fashion [57,58]. Therefore, the presumption of an
influenza infection based on reported influenza percent
positivity, without diagnostic testing for the virus, can lead to
the inappropriate use of antiviral agents [59]. Conversely,
without comprehensive testing, a negative influenza or RSV
test can lead to the prescription of an unnecessary antibiotic.
Trend data can be a valuable aid for antimicrobial stewardship
programs because it provides real-time information regarding
the causes of respiratory infections and highlights the prevalence
of viral infections.

As previously observed [55], the viruses that share the winter
seasonality of influenza demonstrate annual or biennial behavior.
It is possible that the viruses that share an influenza-like
seasonality but do not show a two-year cycle (RSV and hMPV)
are actually alternating strains, but the FilmArray RP Test does
not detect this difference (eg, the FilmArray RP does not
differentiate between RSV A and RSV B). Adeno and the
bacteria show constant occurrence through the year; HRV is in
a unique class with peaks in the fall and spring.

Detection of multiple respiratory viruses in the same patient
has been reported before. In the Trend dataset, the rate of dual
and triple codetections was approximately 7.94%
(28,741/362,101), with HRV/EV as the organism most
commonly observed in a codetection. Some viruses such as
ADVs and the CoVs are detected in the presence of another
organism approximately half of the time (Figure 4). In principle,
a FilmArray RP positive result may represent detection of
residual pathogen nucleic acid from a previous infection that
has resolved. However, several studies suggest that coinfections
are associated with more severe disease [60-62] (see also
discussion in [63]). In such cases, information about multiple
detections can provide infection control practitioners with data
that can assist in bed management and in the assessment of risk
for nosocomial infections in a patient population that has been

segregated by the occurrence of a common pathogen. Such
information can prevent the introduction of a new pathogen
associated with cohorting patients during busy respiratory
seasons [64-66].

The question of whether different respiratory pathogens interfere
with, or facilitate, growth in a human host is of some interest
and not well understood. With the right data, it can be studied
at the population [67], individual [68], and cellular level [63].
Because the Trend data still include some nonpatient tests, we
have chosen not to analyze every possible dual or triple infection
individually. Rather, we have taken a global approach and
compared the overall rate of observed codetections with MIE,
which is a measure of the diversity of viruses circulating in a
specific region and time period. MIE is similar, but not identical,
to Probability of Interspecific Encounter (PIE [69]), also referred
to as the Gini-Simpson index (1-D, where D is the Simpson’s
index), which is used in ecology as a measure of the species
diversity of a region. Similarly, the circulating pathogen number
of Figure 5, first data view, is identical to the Species Richness
measure of ecology. We calculate MIE using frequencies (Pi)
of pathogen positivity per FilmArray test and note that the sum
of all pathogen frequencies can add up to more than unity
because of codetections or be less than unity because of the
presence of negative tests. In this regard, MIE differs from PIE
because it is not a probability measure.

Figure 5, second data view, shows that the observed rate of
codetections is a constant fraction of MIE (approximately
one-quarter as indicated by the linear regression of Multimedia
Appendix 7). This observation suggests that, in the aggregate,
respiratory pathogens are appearing in coinfections at a rate that
can be predicted by their observed abundance. The data,
however, may be biased by the patient population tested and
the type of respiratory disease. The data also does not rule out
that there are particular respiratory pathogens that occur more
or less often in mixed infections than predicted by their
individual percent positivity rates [63,70]. As we improve our
ability to remove nonpatient test results from the Trend dataset,
we will be able to characterize specific virus codetection rates
and their significance [54,55,67,68,71,72].

Applications of Trend Data
As with weather forecasting, there is both a theoretical and a
practical interest in predicting the next few weeks or months of
the respiratory season [73-76]. Trend contributes to infectious
disease forecasting efforts because the data are timely and
comprehensive. As the number of sites participating in Trend
increases, it will be possible to localize the reported infections
to smaller geographical regions. At a high enough density of
Trend sites, patterns of movement of respiratory pathogens
across the United States will become visible in a way that has
not been easily observed before now.

The Trend RP data show the percentage contribution of each
pathogen to what is currently being detected by FilmArray RP
testing (Figure 2, second data view) [44]. This analysis does
not take into account changes in the rate of testing over a given
season; information that should provide additional data regarding
disease intensity and severity. In contrast, the simple metric,
TUR, describes the non-normalized rate of FilmArray test usage
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and serves as a surrogate for the level of syndromic disease that
HCPs observe (Figure 2, first data view).

TUR suffers from two defects. First, it is closely linked to the
sales of the FilmArray test and thus is proprietary data that
BioFire does not share (Google took a similar position in regard
to releasing the search queries used by Google Flu Trends [12]).
Second, TUR is driven by both the demand for testing and the
growth in FilmArray product adoption and increasing acceptance
and usage by HCPs. A useful step beyond TUR would be a
normalized rate that can adjust for the underlying growth of
testing unrelated to the intensity and duration of the respiratory
disease season. An increase in a normalized TUR metric may
indicate the prevalence of circulating respiratory viruses and
the intensity of respiratory disease overall. Likewise, an increase
in the normalized metric, concomitant with an increase in
negative tests, may indicate the occurrence of an outbreak
caused by an emerging pathogen.

Public health agencies, which include local and state health
departments and the CDC, are specifically exempt under a
HIPAA provision that allows clinical laboratories to disclose
PHI to the agencies for specified public health purposes [77].
The exemption includes follow-up studies on reportable
infectious diseases. Real-time pathogen-specific syndromic
surveillance systems such as Trend will allow state health
departments to more rapidly identify, acquire, and test residual
samples from potential outbreaks. Conversely, perceived
outbreaks may actually be coincidental multi-organism seasonal
surges, and rapid analysis by Trend-like systems could prevent
timely and costly outbreak investigation.

Given the movement in health care technology toward greater
vertical integration of a hospital’s data, the bottom-out approach
exemplified by Trend will face more competition from top-out
approaches (Figure 1, see, eg, GermWatch in Utah, [21])

because these systems can capture patient information (eg, age,
gender, and patient address) that is critical for more detailed
epidemiological analysis. However, combining PHI with the
diagnostic test result in the top-out approach makes these
systems more complex and difficult to implement and may limit
participation by health care institutions. Ironically, bottom-out
data export systems have a role to play in the development of
top-out systems because bottom-out export provides a rapid and
efficient means to quality check the data flowing from top-out
systems. Trend data could also be combined with data derived
from other automated diagnostic platforms [78,79]. This work
might best be accomplished by a third party that is viewed as
independent and impartial. For example, in the case of data
originating in the United States, a federal institution or a private
foundation could host a database to which IVD manufacturers
would contribute their different syndromic test results. The
benefits of a more complete view of circulating pathogens
should outweigh the complexities of combining data from
different platforms.

Future Outlook
Syndromic Trends is a novel surveillance tool for simultaneously
monitoring multiple syndromic diseases that has demonstrated
promise in expanding our knowledge of the epidemiology of
infectious diseases. Indeed, the close correlation of seasonal
respiratory viruses tracked by Trend with reported CDC ILI
highlights the major contributory role of multiple respiratory
pathogens beyond influenza to ILI. The national and global
expansion of Trend will provide a comprehensive tool to study
the impact of coinfections, understand the role of previously
underappreciated pathogens, and clarify true disease
epidemiology. Finally, systems such as Trend will be essential
for the rapid identification of disease anomalies indicating
potential emergent outbreaks, thereby providing an independent
tool for public health surveillance.
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Abstract

Background: Accurate HIV surveillance data are essential to monitor trends to help end the HIV epidemic. Owing to strict
policies around data security and confidentiality, HIV surveillance data have not been routinely shared across jurisdictions except
a biannual case-by-case review process to identify and remove duplicate cases (Routine Interstate Duplicate Review, RIDR).
HIV surveillance estimates for the District of Columbia (DC) are complicated by migration and care seeking throughout the
metropolitan area, which includes Maryland and Virginia. To address gaps in HIV surveillance data, health departments of DC,
Maryland, and Virginia have established HIV surveillance data sharing agreements. Although the Black Box (a privacy data
integration tool external to the health departments) facilitates the secure exchange of data between DC, Maryland, and Virginia,
its previous iterations were limited by the frequency and scope of information exchanged. The health departments of DC, Maryland,
and Virginia engaged in data sharing to further improve HIV surveillance estimates.

Objective: This study assessed the impact of cross-jurisdictional data sharing on the estimation of people living with HIV in
DC and reduction of cases in the RIDR process.

Methods: Data sharing agreements established in 2014 allowed for the exchange of HIV case information (eg, current residential
address) and laboratory information (eg, test types, result dates, and results) from the enhanced HIV/AIDS Reporting System
(eHARS). Regular data exchanges began in 2017. The participating jurisdictions transferred data (via secure file transfer protocol)
for individuals having a residential address in a partnering jurisdiction at the time of HIV diagnosis or evidence of receiving
HIV-related services at a facility located in a partnering jurisdiction. The DC Department of Health compared the data received
to DC eHARS and imported updated data that matched existing cases. Evaluation of changes in current residential address and
HIV prevalence was conducted by comparing data before and after HIV surveillance data exchanges.

Results: After the HIV surveillance data exchange, an average of 396 fewer cases were estimated to be living in DC each year
from 2012 to 2016. Among cases with a residential status change, 66.4% (1316/1982) had relocated to Maryland and 19.8%
(392/1982) to Virginia; majority of these had relocated to counties bordering DC. Relocation in and out of DC differed by mode
of transmission, race and ethnicity, age group, and gender. After data exchange, the volume of HIV cases needing RIDR decreased
by 74% for DC-Maryland and 81% for DC-Virginia.

Conclusions: HIV surveillance data exchange between the public health departments of DC, Maryland, and Virginia reduced
the number of cases misclassified as DC residents and reduced the number of cases needing RIDR. Continued data exchanges
will enhance the ability of DC Department of Health to monitor the local HIV epidemic.

(JMIR Public Health Surveill 2018;4(3):e62)   doi:10.2196/publichealth.9800
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Introduction

Both the National HIV/AIDS Strategy released by the White
House Office of National AIDS Policy in 2010 [1] and the 2016
District of Columbia 90/90/90/50 Plan to End the HIV Epidemic
by 2020 [2] include key goals and outcome measures that
depend on having an accurate population estimate of the number
of individuals diagnosed and living with HIV. The four main
aims of the District of Columbia (DC) Plan included the
following: 90% knowing their HIV status, 90% engagement in
HIV care, 90% viral suppression among those who enter care,
and 50% reduction in new HIV diagnoses by 2020. Because
the National HIV/AIDS Surveillance System (NHSS) aims to
document all people diagnosed with HIV in the United States,
the system is uniquely poised to provide a foundational
denominator for these outcomes. Participants in NHSS consist
of state and local health departments with public health authority
to collect data on people living with HIV (PLWH). Thus, it is
incumbent upon the participants of NHSS to provide the most
up-to-date HIV prevalence data possible. In addition, having
up-to-date HIV surveillance data would make data-to-care
strategies, which use surveillance data to identify PLWH who
are not achieving optimal health outcomes, more efficient [3].

NHSS supports the systematic collection of HIV and AIDS
cases in the United States by 59 jurisdictions (states and
territories), including the DC [4]. The data collected in NHSS
are utilized to monitor the HIV epidemic, inform care, treatment,
and prevention efforts and enable local health departments to
report to the United States Centers for Disease Control and
Prevention (CDC). Data are collected and maintained on local
instances of the NHSS’s data collection system, the enhanced
HIV/AIDS Reporting System (eHARS), which is a
browser-based application. In addition to HIV-related diagnostic
and clinical laboratory data, demographic data, risk information,
treatment facility, and residential address are collected from
health care providers and stored in eHARS. Each NHSS
participant shares deidentified data with CDC monthly [5].

The Routine Interstate Duplicate Review (RIDR) process
facilitates the identification and exchange of information across
jurisdictions concerning individuals diagnosed with HIV who
are documented in the eHARS databases of different
jurisdictions. Although the main purpose of this process is
deduplication, resident addresses may be exchanged, allowing
jurisdictions to further refine their local estimates of PLWH.
Certain authorized personnel at the state, county, and local
health departments are permitted to discuss cases if there is an
indication that the individual may have been in another state’s
surveillance system. The Council of State and Territorial
Epidemiologists provides a platform for jurisdictions to maintain
an up-to-date list of the personnel identified to conduct RIDR.

Migration and population growth have challenged the
understanding of who is living with HIV in DC. The US Census
Bureau reported that between 2010 and 2016, the population
of DC increased by an estimated 79,447 (13.2%) persons, and

the Washington-Arlington-Alexandria Metropolitan Statistical
Area population increased by an estimated 525,745 (8.8%)
persons [6]. In addition to overall growth, according to the
American Community Survey, between 2011 and 2015,
approximately 24,530 persons moved out of DC to the
surrounding counties of Prince George’s and Montgomery
County, Maryland, Arlington and Fairfax County, Virginia, and
Alexandria [7], and the racial majority of those who moved out
of DC to those jurisdictions were black at 44.3%
(10,868/24,530). The vast majority of black persons and
Hispanic and Latino persons who left DC moved to Prince
George’s County, Maryland, whereas the majority of the white
persons who left DC moved to Montgomery County, Maryland.
The overall population shifts make understanding the migration
patterns of PLWH in the DC metropolitan area more
challenging.

Residential address information is collected by NHSS, but it
may not be updated beyond the initial case report collected at
the time of HIV diagnosis. A lack of current residential
addresses can stymie data-to-care efforts, which utilize
residential address to re-engage people out of care; surveillance
epidemiologists have found that the bulk of the effort is spent
on updating addresses in eHARS, increasing the time to
re-engagement [8]. Based on data in DC eHARS, PLWH may
appear to be out of care but could have moved to a nearby
county outside of DC and switched their care to a non-DC health
care provider.

In 2013, the health departments of DC, Maryland, and Virginia
met with Georgetown University to discuss the concept of
sharing data across jurisdictions to expand the scope and
timeliness of HIV surveillance data. By 2014, the three
jurisdictions had agreed to share HIV surveillance data with
each other and executed data sharing agreements (DSAs). DSAs
included elements such as the frequency of sharing data, what
variables would be shared, data security measures, and the
format in which data would be transmitted. In 2014, National
Institutes of Health funded Georgetown University to conduct
a pilot study on a privacy sharing device for disease surveillance
data known as the Black Box, in which the three jurisdictions
participated. The Black Box pilot-tested a proof of concept that
an encrypted, intermediary technology could receive surveillance
data from the three health departments and securely report the
probability of matches back to each jurisdiction. The pilot was
successful in identifying multiple matches across the
jurisdictions [8]. After seeing the success of the Black Box pilot
and building upon the trust that was built during the setup of
the Black Box pilot, the health departments of DC, Maryland,
and Virginia recognized the need for more variables and routine
exchanges of data to occur separately from relying upon the
Black Box technology.

Starting in 2016, the health departments of DC, Maryland, and
Virginia began to hold monthly conference calls that focused
on the implementation of a routine exchange of HIV surveillance
data (independent of the Black Box) between the three
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jurisdictions. Goals of the data exchange included the following:
increasing information utilized to assess the HIV care continuum
through the exchange of laboratory data; increase the ability to
deduplicate cases through the exchange of personally identifiable
surveillance data (ie, first name, last name, and date of birth);
and increase the accuracy of the estimation of PLWH in DC by
utilizing current residential information received through the
data exchange. The objectives of this evaluation were to assess
the impact of cross-jurisdictional data sharing on the estimation
of PLWH in DC and reduction of cases needing review in the
RIDR process.

Methods

Cross-Jurisdictional Operations Coordination and
Governance Structure
Discussions about the concept of cross-jurisdictional exchanges
of HIV data between DC Department of Health, Maryland
Department of Health, and Virginia Department of Health began
in January 2013. At the outset, all three jurisdictions needed
substantial organizational and leadership buy-in and support
from the general counsels to execute DSAs. In addition,
following the execution of DSAs, key stakeholders in the
surveillance divisions provided more nuanced input to plan for
implementation. Beginning in 2016, the three jurisdictions
established the DC, Maryland, and Virginia Regional (DMV)
HIV Surveillance group, which comprised the leadership of the
three jurisdictions’ HIV surveillance units, epidemiologists,
eHARS data managers, and case surveillance coordinators. The
group scheduled monthly calls to plan and review progress. In
between the monthly calls, a subcommittee of epidemiologists

from each health department developed the specific procedures
of the data exchange, including the data elements to be shared,
the frequency of exchanges, and validation of results. Variables
chosen to be part of the exchange included case information,
HIV diagnostic testing, viral load, CD4 results, and genotype
sequence data (Multimedia Appendix 1).

Data Extraction and Exchange Procedures
Each jurisdiction used the same SAS v9.4 (SAS Institute, Inc,
Cary, North Carolina, USA) code to extract data from their
respective instances of eHARS. The data files were encrypted
and uploaded to a secure file transfer protocol site hosted by
Maryland Department of Health. The epidemiologists who
conducted the data extraction notified the respective jurisdictions
of the uploaded data and provided encryption passwords to
designated personnel. Upon receipt of the shared files, each
jurisdiction assessed data quality and communicated about data
gaps and inconsistencies.

The initial data exchange included data entered into eHARS
from January 1, 2015, to March 31, 2017. The data sent by
jurisdictions included cases for which the state listed for
residence at HIV diagnosis, residence at AIDS diagnosis, HIV
diagnosing facility, AIDS diagnosing facility or laboratory
facility state matched the receiving jurisdiction. During this
initial exchange, DC Department of Health received 56,451
laboratory results from Maryland Department of Health and
15,090 from Virginia Department of Health. DC Department
of Health provided Maryland Department of Health with 82,683
laboratory results and provided Virginia Department of Health
with 97,467 (Table 1).

Table 1. Laboratory results exchanged by the jurisdictions.

Jurisdiction (n)

Results received by and sent to jurisdictions sent by DCa MarylandVirginia

56,45115,090Laboratory results received

82,68397,467Laboratory results sent

aDC: District of Columbia.

Table 2. Data matching criteria.

Matching criteriaMatch Level

If First Name, Last Name, Date of BirthMatch 1

Else if, First Name (First 6 Letters), Last Name, Date of BirthMatch 2

Else if, Last Name (First Letter), Last Name (Letters 3 through 8), First Name (Letters 2 through 8), Date of BirthMatch 3

Else if, Last Name (First Letter), Last Name (Letters 3 through 8), First Name (Letters 2 through 8), Birth Month, Birth YearMatch 4

Else if, Last Name (First Letter), Last Name (Letters 3 through 8), First Name (Letters 2 through 8), Birth Day, Birth YearMatch 5

Else, if Last Name, First Name (Letters 1 through 2), Date of BirthMatch 6

Else, if Last Name (Letters 1 through 3), First Name (Letters 1 through 3), Date of BirthMatch 7

Else if, Last Name (Letters 1 through 4), First Name (Letters 1 through 4), Birth YearMatch 8

Else if, First Name (Letters 1 through 3), Last Name (Letters 1 through 3), Birth Month, Birth YearMatch 9

Else if, First Name (Letters 1 through 3), Last Name (Letters 1 through 3), Birth Day, Birth YearMatch 10

First Name (Letters 1 through 3), Last Name (Letters 1 through 3), Birth Month, Birth YearMatch 11
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Data Matching Procedures
Each jurisdiction used their own matching procedures and
algorithms to assess whether the person-level data received
during the exchange matched persons currently in their eHARS
system. DC Department of Health used an 11-key algorithm in
SAS (Table 2) to match incoming data from exchange with
existing persons in DC eHARS. The first match key assessed
exact matches, which consisted of first name, last name, and
date of birth, whereas the other match key criteria allowed for
slight variation in how the surveillance information may have
been recorded.

Estimating People Living With HIV in the District of
Columbia
Calculations of the number of PLWH vary by jurisdiction. For
the purpose of this study, DC estimated the number of PLWH
based on evidence of a DC residential address within the
previous 5 years and having associated laboratory data present
within the same time period; for example, when estimating
PLWH for 2016, persons with a DC address within the past 5
years who also had laboratory records between 2012 and 2016
would be included in the estimate. This is consistent with how
the DC prevalence estimate was presented at the Annual
Epidemiology and Surveillance Report from DC [9]. DC
recognizes that this may differ from HIV prevalence estimates
published by CDC; however, owing to the high amount of
population movement in and out of DC, it is believed this would
produce a more accurate estimate.

Routine Interstate Duplicate Review
RIDR is a process coordinated by CDC, in which a Soundex
match is conducted on national data to identify potential
duplicates within the system. Soundex is a coded index

associated with how a name sounds versus how a name is
spelled. Jurisdictions receive lists semiannually and typically
correspond with one another by telephone to ascertain whether
or not the persons identified are same or different. Staff from
each jurisdiction record a duplicate review status in eHARS
and exchange new current residential addresses and recent
laboratory information [5]. Updating these data enable
jurisdictions to identify persons who have moved between
jurisdictions. Information received from the data exchange was
utilized to update RIDR information on matched persons without
the need to conduct manual RIDR processes.

Data Analysis
The current residential address is calculated and updated in
eHARS from incoming case reports and laboratory data obtained
from health care providers, laboratories, or other health
departments.

Analytic datasets were derived before and after uploading
exchanged data from Maryland and Virginia into DC eHARS;
these became the pre-exchange and postexchange datasets. The
main outcomes of this analysis were the change in the estimate
of PLWH in DC and the reduction in the number of cases
needing RIDR between DC and Maryland and between DC and
Virginia after the data exchange.

Results

Changes in Residential Jurisdiction
After the HIV surveillance data exchange between DC and
Maryland and Virginia, there were 396 fewer persons estimated
to be living with HIV in DC each year between 2012 and 2016,
as seen in Figure 1. There was an average −3.1% difference
(pre-exchange versus postexchange) over this time period.

Figure 1. People living with HIV in Washington, District of Columbia (DC), 2012-2016, before and after HIV surveillance data exchange between
DC, Maryland, and Virginia.
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Figure 2. Distribution of persons with a change in residential jurisdiction, 2016.

Table 3. Updated current state of residence after HIV surveillance data exchange between the District of Columbia, Maryland, and Virginia, by
Jurisdiction, 2016.

People living with HIV with a change in residential jurisdiction (N=426), n (%)Residential state

1 (0.2)California

43 (10.1)District of Columbia

1 (0.2)Delaware

284 (66.7)Maryland

1 (0.2)Mississippi

1 (0.2)North Carolina

1 (0.2)New Jersey

7 (1.6)New York

1 (0.2)Ohio

1 (0.2)Oklahoma

1 (0.2)Pennsylvania

1 (0.2)Texas

83 (19.5)Virginia

Of the 426 persons who were found to have a non-DC residence
in 2016, the majority had an address in Maryland (284/426,
66.7%) or Virginia (83/426, 19.5%). Most of the individuals
who appear to have moved out of DC were in one of the adjacent
counties: Prince George’s County, Maryland (n=138),
Montgomery County, Maryland (n=34), and Arlington County,
Virginia (n=23). Figure 2 geospatially depicts the persons whose
current residence changed owing to information received in the
data exchange with most people shown to be living closely
along the border of DC. It was also found that 43 people changed
their residence from either Maryland or Virginia to DC (Table
3).

Most people with a change in residential jurisdiction were male.
Males represented 74.7% (212/284) of those with a new

residential address in Maryland and 79.5% (66/83) of persons
with a new address in Virginia. Among those whose residential
jurisdiction changed to DC, 83.7% (36/43) were male. Just
under 50% of migrants to Maryland (137/284, 48.2%) had a
mode of transmission of men who have sex with men (MSM)
or MSM and injection drug use (MSM/IDU). Similarly, when
assessing migrants by mode of transmission, MSM and
MSM/IDU represented the majority of persons who migrated
to Virginia (47/83, 56.6%). When assessing those with an
evidence of a change in residency to either of the three
jurisdictions, among those with a mode of transmission of IDU,
there were relatively similar distributions by jurisdiction at 9.3%
(4/43) to DC, 8.5% (24/284) to Maryland, and 8.4% (7/83) to
Virginia. Similar results were found when assessing heterosexual
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contact, wherein 29.9% (85/284) of persons with a new
Maryland residence, 26.5% (22/83) of persons with a new
Virginia address, and 23.3% (10/43) of persons with a new DC
address had heterosexual contact as a mode of transmission.
Changes of address among racial or ethnic categories showed
significant differences with black persons or African Americans
making up a larger percentage of those who migrated to DC
(31/43, 72.1%) and Maryland (234/284, 82.4%) compared with
Virginia (48/83, 57.8%). Additionally, Hispanic and Latino
persons represented a higher proportion of persons moving to

Virginia (12/83, 14.5%) than those who moved to DC (4/43,
9.3%) or Maryland (19/284, 6.7%). White persons represented
a smaller proportion of those who moved to Maryland (21/284,
7.4%) when compared with DC (8/43, 18.6%) and Virginia
(20/83, 24.1%). When looking at age groups, persons with a
residential change into DC were more likely to be over 40 years
old, whereas persons aged between 25 and 39 years represented
the majority of persons with a residential change to Maryland
(148/283, 52.2%) and Virginia (48/83, 57.8%) (Table 4).

Table 4. Demographic characteristics of people living with HIV with a change in residential jurisdiction, by state, 2016.

People living with HIV in DCa (N=12,964),
n (%)

People living with HIV with a change in residential jurisdictionCharacteristics

Virginia (N=83), n (%)Maryland (N=284), n (%)DC (N=43), n (%)

Gender

3395 (26.2)15 (18.1)70 (24.6)7 (16.3)Female

72 (0.6)0 (0.0)2 (0.7)0 (0.0)Female to male

9352 (72.1)66 (79.5)212 (74.6)36 (83.7)Male

145 (1.1)2 (2.4)0 (0.0)0 (0.0)Male to female

Mode of transmission

5650 (43.6)42 (50.6)127 (44.7)24 (55.8)MSMb

1372 (10.6)7 (8.4)24 (8.5)4 (9.3)IDUc

404 (3.1)5 (6.0)10 (3.5)0 (0.0)MSM/IDU

3689 (28.5)22 (26.5)85 (29.9)10 (23.3)Heterosexual contact

1703 (13.1)7 (8.4)31 (10.9)4 (9.3)Risk not identified

146 (1.1)0 (0.0)7 (2.5)1 (2.3)Otherd

Race or ethnicity

2076 (16.0)20 (24.1)21 (7.4)8 (18.6)White

9670 (74.6)48 (57.8)234 (82.4)31 (72.1)Black

884 (6.8)12 (14.5)19 (6.7)4 (9.3)Hispanic

334 (2.6)3 (3.6)10 (3.5)0 (0.0)Othere

Age group

22 (0.2)0 (0.0)5 (1.8)1 (2.3)0-12

60 (0.5)4 (4.8)17 (6.0)2 (4.7)13-19

331 (2.6)11 (13.3)48 (16.9)7 (16.3)20-24

908 (7.0)21 (25.3)47 (16.5)7 (16.3)25-29

2452 (18.9)27 (32.5)101 (35.6)9 (20.9)30-39

2963 (22.9)16 (19.3)49 (17.3)12 (27.9)40-49

3957 (30.5)4 (4.8)15 (5.3)5 (11.6)50-59

2268 (17.5)0 (0.0)2 (0.7)0 (0.0)>=60

3 (0.0)0 (0.0)0 (0.0)0 (0.0)Missing

aDC: Dictrict of Columbia.
bMSM: men who have sex with men.
cIDU: injection drug use.
dOther mode of transmission includes perinatal transmission, hemophilia, blood transfusion, and occupational exposure (health care workers).
eOther race includes mixed-race individuals, Asians, American Indians, Native Hawaiians, Pacific Islanders, and unknown races.
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Table 5. January 2017 Routine Interstate Duplicate Review (RIDR) cases resolved by the District of Columbia, Maryland and Virginia region HIV
surveillance data exchange.

Virginia (N=82), n (%)Maryland (N=171), n (%)Total HIV cases identified by Centers for Disease Control and Prevention

67 (81.7)127 (74.3)RIDR cases resolved by data exchange

15 (18.3)44 (25.7)Remaining HIV cases needing RIDR

Changes in Routine Interstate Duplicate Review
RIDR activities are typically conducted through the exchange
of case information via the telephone. Telephonic RIDR
resolution activities between DC and Maryland and DC and
Virginia were not conducted prior to the data exchange. The
HIV surveillance data exchange among DC, Maryland, and
Virginia allowed for RIDR information to be exchanged
electronically and decreased the number of cases identified by
RIDR needing manual resolution by 74.3% (127/171) between
DC and Maryland and by 81.7% (67/82) between DC and
Virginia (Table 5). This has had a significant impact in reducing
the workload of health department staff in all three jurisdictions.
Additionally, the data sharing process has contributed to an
overall reduction in the number of persons needing resolution
between the three jurisdictions because duplicates were
identified earlier than with the biannual RIDR process. For the
July 2017 RIDR list produced by CDC, DC Department of
Health saw a reduction in resolution case volume of 61.4%
between DC and Maryland and 43.9% between DC and Virginia
compared with the January 2017 RIDR list.

Discussion

Although the overall population estimates between 2012
(635,630) and 2016 (684,336) in DC increased by 7.1% [6],
based on our analysis, between 375 and 420 PLWH migrated
out of DC each year over the past five years. This represents a
−3.1% change in PLWH in DC over this time period. Although
this percent decrease is relatively small, the absolute number
of persons deemed to be living in a different jurisdiction
represents a significant amount of surveillance personnel effort
that would have been exerted in re-engagement in care efforts.
There are many factors that may contribute to migration in and
out of DC, but they are beyond the scope of this paper. However,
it is interesting to note that the majority of individuals diagnosed
with HIV who moved out of DC stayed within the surrounding
counties (Prince George’s County and Montgomery County in
Maryland, and Fairfax County, Arlington County, and
Alexandria City in Virginia), which are part of the DC Ryan
White Part A Eligible Metropolitan Area. Individuals who are
Ryan White-eligible would still be able to access services
offered in the Part A geographic area. However, other services
they may need, such as Medicaid or the AIDS Drug Assistance
Program, would need to be accessed from their new residential
jurisdiction because they are distributed by states only.

We demonstrated a significant reduction in cases needing to be
resolved via the labor-intensive RIDR process after the
implementation of the data exchange. Cross-jurisdictional HIV
surveillance data exchange is feasible and could be of great
benefit to other areas of the United States where there are
substantial movement across states or jurisdictions. The protocol

used in the DMV HIV surveillance data exchange has made DC
Department of Health HIV surveillance operations more
efficient.

Testing and treatment methods with new advanced biomedical
interventions have become the cornerstone of strategies to
reduce new HIV infections. The 90/90/90/50 Plan to End the
HIV Epidemic by 2020 in the District of Columbia set goals to
ensure that 90% of persons with HIV know their status, 90%
of persons diagnosed with HIV are retained in HIV care and
treatment, and 90% of persons on treatment are virally
suppressed, resulting in a 50% reduction in cases by 2020 over
the baseline year of 2015 [10]. To meet these measures, a robust
surveillance system is needed to identify new cases of HIV and
monitor HIV care markers with an accurate denominator. The
DMV HIV surveillance data exchange has enabled DC
Department of Health to more accurately identify persons
residing within the jurisdiction to better track and assess health
outcome measures.

Data-to-care efforts in DC have focused on locating PLWH
who appear to be out of care based on clinical and surveillance
data [11]. Prior to the DMV HIV surveillance data exchange,
individuals who moved out of DC may have appeared to be out
of care, but they relocated their residence and health care. Data
exchange resulted in updated residential addresses and reduced
the number of people potentially needing re-engagement in care.
The updated address data will significantly assist the data-to-care
efforts in DC with more accurate location information of people
who may be in need of outreach, re-engagement, treatment
adherence, and other enabling or support services. The data
exchange also updated laboratory data, which is critical to
understanding who may need more intensive public health
interventions, such as individuals with low CD4 cell counts or
high viral load levels. The use of updated residential address
and laboratory data in this way affirms the utility of collecting
this information from PLWH. Future analyses may include pre-
and postexchange comparison of engagement in care and viral
suppression among PLWH in DC.

Data exchange was limited to three states with moderate HIV
prevalence. The DMV HIV surveillance data exchange may be
enhanced by exchanging data with other nearby states, such as
New York, New Jersey, Pennsylvania, and North Carolina, with
high levels of RIDR overlap with cases in DC. This was
explored in a separate project (Black Box RIDR Resolution
project) funded by CDC, in which additional states participate
to identify potential matched cases in a secure and confidential
manner, and the recently funded CDC-RFA-PS18-1805-Secure
Data Sharing Tool awarded to Georgetown University.
Additional limitations include in the validity of the accuracy of
the matching algorithm. The 11-key matching algorithm was
validated to be extremely accurate at the higher levels (match
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levels 1-4), although there is potential for mismatching at the
lower levels (match levels 6-11).

The DMV HIV surveillance data exchange has demonstrated
that conducting standardized matches of data across jurisdictions
is feasible and provides timely resolution of duplicate cases that
might otherwise require time-intensive, one-to-one conversations

between health department staff. Other states, particularly
jurisdictions in which PLWH may seek care across jurisdictional
boundaries, may benefit from pursuing DSAs to conduct HIV
surveillance data exchanges. More accurate epidemiologic data
may be used for improving funding decisions around care and
prevention programs, particularly in areas with significant levels
of population movement and migration.
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Abstract

Background: Most smokers start smoking during their early adolescence, often with the idea that smoking is glamorous.
Interventions that harness the broad availability of mobile phones as well as adolescents' interest in their appearance may be a
novel way to improve school-based prevention. A recent study conducted in Germany showed promising results. However, the
transfer to other cultural contexts, effects on different genders, and implementability remains unknown.

Objective: In this observational study, we aimed to test the perception and implementability of facial-aging apps to prevent
smoking in secondary schools in Brazil in accordance with the theory of planned behavior and with respect to different genders.

Methods: We used a free facial-aging mobile phone app (“Smokerface”) in three Brazilian secondary schools via a novel method
called mirroring. The students’ altered three-dimensional selfies on mobile phones or tablets and images were “mirrored” via a
projector in front of their whole grade. Using an anonymous questionnaire, we then measured on a 5-point Likert scale the
perceptions of the intervention among 306 Brazilian secondary school students of both genders in the seventh grade (average age
12.97 years). A second questionnaire captured perceptions of medical students who conducted the intervention and its conduction
per protocol.

Results: The majority of students perceived the intervention as fun (304/306, 99.3%), claimed the intervention motivated them
not to smoke (289/306, 94.4%), and stated that they learned new benefits of not smoking (300/306, 98.0%). Only a minority of
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students disagreed or fully disagreed that they learned new benefits of nonsmoking (4/306, 1.3%) or that they themselves were
motivated not to smoke (5/306, 1.6%). All of the protocol was delivered by volunteer medical students.

Conclusions: Our data indicate the potential for facial-aging interventions to reduce smoking prevalence in Brazilian secondary
schools in accordance with the theory of planned behavior. Volunteer medical students enjoyed the intervention and are capable
of complete implementation per protocol.

(JMIR Public Health Surveill 2018;4(3):e10234)   doi:10.2196/10234

KEYWORDS

dermatology; smoking; apps; photoaging; face; skin; tobacco; tobacco cessation; tobacco prevention

Introduction

Background
Smoking is the leading global cause of preventable death,
causing nearly 6 million deaths per year worldwide. A 2011
study of the tobacco-related burden in Brazil found that smoking
was accountable for 147,072 deaths (403 deaths per day),
157,126 myocardial infarctions, and 63,753 cases of cancer. It
generated 2.69 million disability-adjusted life years and cost
the Brazilian health system US $7.37 billion in 2011 alone [1].

Most smokers start smoking during their early adolescence,
often with the idea that smoking is glamorous, with the
associated health consequences too far in the future to imagine.
According to the Adolescent Cardiovascular Risk Study, almost
600,000 adolescents smoke regularly in Brazil and most of them
tried their first cigarette between 15 and 17 years of age [2].

The earlier a person starts smoking, the higher the chance of
becoming a regular smoker and developing associated diseases.
As most smokers start smoking during early adolescence, it is
imperative to develop, test, and validate tobacco control
strategies that focus on this group through an age-appropriate
and innovative approach. Most educational interventions for
adolescents have focused on increasing awareness of
tobacco-induced diseases [2]. These mostly fail to show
sustainable effects [3].

Research on School-Based Tobacco Prevention
Interventions in Brazil
In Brazil, a 2015 randomized controlled trial at the Federal
University of the State of São Paulo investigating different
school-based interventions to reduce the use of various
psychotropic substances among 1316 students showed mixed
effects for different drugs/settings with study design limitations
precluding interpretation [4].

Furthermore, a study on educational interventions among school
adolescents analyzed the effectiveness of an educational program
on smoking developed by the Brazilian Cancer Institute. The
researchers selected 32 random schools from a total of 46 public
schools in the city of Pelotas and randomized them to control
and intervention schools. The total sample was 2200 students
in the 7th and 8th grades (13-14 years old). They used
questionnaires before and after interventions and collected urine
samples in order to detect nicotine. Although the results showed
no change in tobacco use reduction, they improved the students’
knowledge on passive smoking [5].

Despite these studies, data on school-based tobacco prevention
interventions conducted remain scarce.

Education Against Tobacco
Founded in Germany in 2012, Education Against Tobacco is a
global network of medical students that aims to provide
science-based and age-appropriate preventions to a large number
of adolescents and at the same time sensitizes prospective
physicians to the importance of delivering smoking cessation
advice and engaging themselves in tobacco control activities
after their graduation [6-10]. The network currently involves
80 medical schools in 14 countries, with 3500 medical students
educating more than 50,000 secondary school students in the
classroom setting per year, while using and optimizing apps
and strategies. In Brazil, Education Against Tobacco was
founded in 2016 and is already present in 15 medical schools
in the country.

In a recent paper, we introduced facial-aging mobile apps that
alter a person’s selfie (a self-portrait taken with a mobile phone
camera) to predict future appearance if that person smokes [11].
These apps are considered a new opportunity for smoking
prevention after their effectiveness was first demonstrated by
Burford et al [12,13]. They are also used in other behavioral
change settings, such as skin cancer prevention [14,15]. In the
clinical setting, they were recently made available in waiting
rooms to motivate patients to address quitting with their doctor
[16] or to improve UV protection [17]. In addition to this, many
dermatology publications have called for a novel public health
approach in light of new findings on the facial-aging effects of
smoking [18]. Facial-aging approaches indicate relevance for
teenagers as evidenced by numerous publications demonstrating
and investigating their influence on behavior [6,19-24]. In
contrast, it is notable that the tobacco industry itself tried to
establish the link between attractiveness and smoking by
commercial advertising in the past [25].

We recently implemented a facial-aging mobile app
(“Smokerface”) in German secondary schools via a method
called mirroring [26]. We “mirrored” the students’ altered
3-dimensional (3D) selfies on mobile phones or tablets via a
projector in front of their entire grade. Using an anonymous
questionnaire, we then measured sociodemographic data as well
as the perceptions of the intervention on a 5-point Likert scale
among 125 students of both genders (average age 12.75 years).
A majority of the students perceived the intervention as fun
(77/125, 61.6%), claimed that the intervention motivated them
not to smoke (79/125, 63.2%), and stated that they learned new
benefits of nonsmoking (81/125, 64.8%).
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Theoretical Considerations on Photoaging
Interventions in Adolescence
The self-concept of appearance, which photoaging interventions
harness, is the strongest predictor of self-esteem in adolescents
of both genders [27,28]. In the most recent publication by
Baudson et al involving a sample of 2950 adolescents from a
broad range of secondary schools, it was noted that this is
especially true for students from lower educational schools and
girls [28]. An explanation for the general effectiveness of such
an intervention is given by the theory of planned behavior,
according to which the subjective norm (ie, “my friends think
that smoking makes you unattractive”), the attitudes (consisting
of beliefs, ie, “smoking leads to unattractiveness”), and the
perceived behavioral control (ie, “I can resist if somebody offers
me a cigarette”) influence both the behavioral intentions of a
person and their behavior. Photoaging interventions may affect
all three of these predictors, and the mirroring intervention
specifically had a strong influence on the subjective norm in a
recent pilot study [26].

This study investigated if effects are different for female/male
participants and if the results of our novel facial-aging
intervention are reproducible in Brazil, a country where data
on tobacco prevention programs remain scarce. Additionally,
a process evaluation investigated whether local volunteering
medical students are capable of complete intervention
implementation.

Methods

Participants
We included a total sample of 306 students in Grade 7 in our
cross-sectional study with an average age of 12.97 years (age
range 12-16; 172/306, 56.2% female; 134/306, 43.8% male)
attending three regular public secondary schools in the city of
Ponte Nova in southeast Brazil (total of 15 classes). Informed
consent was obtained from the parents. A large majority of
participants (257/306, 84.0%) reported that they owned a
smartphone.

Setting
The mirroring approach was implemented via local medical
students from the Education Against Tobacco nonprofit
organization who were attending the Federal University of Ouro
Preto in Brazil [7-9]. Two medical students per classroom
conducted the interventions with approximately 20 students at
a time (average 20.4 students, SD 4.4). To increase students’
participation in the mirroring intervention, students were
encouraged to download the app (“Smokerface”) before our
visit, via a letter 3 days in advance. When we visited the schools,
34.3% (105/306) of students already had the facial-aging app
on their mobile phone.

Intervention
The mirroring intervention consists of a 45-minute app-based
module in the classroom setting. Mirroring means that the
student’s altered 3D selfies on their mobile phones or tablets
are “mirrored” via a projector in front of the whole class, for
example, sneezing or coughing (Multimedia Appendix 1). In
front of their peers and teachers, they could display their image
as a nonsmoker/smoker 1, 3, 6, 9, 12, or 15 years in the future
(see Figures 1 and 2). Multiple device displays can be projected
simultaneously, which we used to consolidate the altering
measures with graphics (eg, to explain wrinkle formation). We
implemented mirroring with 10 Galaxy Tab A tablets (Samsung)
via Apple’s AirPlay interface using the Android app
“Mirroring360” (Splashtop Inc).

In the first 10 minutes, the displayed face of one student
volunteer was used to show the app’s altering features to their
peer group, providing an incentive for the rest of the class to
try the app.

In the following 15 minutes, students were encouraged to try
the app on their own device or one of the tablet computers
provided for students not owning a mobile phone or without
the app. The number of provided tablet computers was
calculated so the phase would take up to 12 minutes at the most,
factoring in a utilization time of about 4 minutes per student.
By this calculation, 25 minutes of the mirroring intervention
and 10 provided tablets were sufficient to have every student
within a grade of 40 pupils successfully photoaged at least once.

This was followed by a 15-minute interactive discussion of the
remaining functions of the app: facial changes, quitting via the
free Smokerstop app, and impaired growth, strength, and
sagginess of women’s breasts. These topics are strictly in line
with the explanatory graphics within the app (Figures 3 and 4).

Postsurvey
In the last 5 minutes of the time in the classroom, the perception
of the intervention by students was measured directly after the
intervention via 10 items in an anonymous survey on a 5-point
Likert scale: (1) one item on change of intentions (“My 3D
selfie motivates me not to smoke”), (2) two items on the
perceived reactions of the peer group (“My classmates think I
look better as a non-smoker” and “The reactions of my
classmates motivate me not to smoke”), (3) three items on future
app-use and app-sharing (“I plan to try this app again in the
future,” “I want to have the Smokerface app on my phone” and
“I plan to show this app to other people”), (4) four items
addressing global feedback (“The intervention was fun,” “I
learned new benefits of nonsmoking,” “Smokerface app
motivates other people to quit smoking,” and “Smoking would
have negative effects on my appearance”).

The medical students filled out a brief process evaluation
consisting of six items capturing the complete implementation
of the intervention as well as how the medical students perceived
its effectiveness when in class.
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Figure 1. Effect view of the Smokerface app on an iOS iPad; normal aging without smoking for 15 years.

Figure 2. Effect view of the Smokerface app on an iOS iPad; aging with smoking one pack of cigarettes a day for 15 years.
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Figure 3. Infographic within the Smokerface app on the dermatologic short-term/long-term consequences of smoking.

Figure 4. Infographic within the Smokerface app on the consequences of smoking on growth/strength and the firmness of women breasts.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 |e10234 | p.34http://publichealth.jmir.org/2018/3/e10234/
(page number not for citation purposes)

Bernardes-Souza et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results

All data were analyzed and illustrated in regards to overall
perceptions of the intervention within the whole sample (Figure
5) but also to identify gender differences (Figure 6).

Motivation Not to Smoke
We measured 94.4% (289/306) agreement on the item measuring
the increase of motivation not to smoke: 94.4% agreed/fully
agreed that their 3D selfie motivates them not to smoke while
only 1.6% (5/306) disagreed or strongly disagreed and 4% were
not sure (Figure 5). These results did not vary notably in males
compared to females: in males, 92.4% (124/134) agreement and
1.5% (2/134) disagreement and, in females, 95.9% (165/172)
agreement and 1.8% (3/172) disagreement (Figure 6).

Perceived Subjective Norm During the Mirroring
Intervention
The two items measuring the reactions of the peer group towards
the individual selfie showed positive peer pressure to become
or to remain a nonsmoker. The majority of students
agreed/totally agreed that their classmates prefer them as
nonsmokers (266/306, 86.9%) and that their classmates’ reaction
to the 3D selfie motivates them not to smoke (264/306, 86.2%)
(Figure 5). The results were similar between different genders
on the first item (“My classmates think I look better as a
nonsmoker”). However, females had a higher rate of agreement
on the second item (“The reactions of my classmates motivate
me not to smoke”): 81.2% (109/134) agreement and 9.0%
(12/134) disagreement in males compared to 90.0% (155/172)

agreement and 1.2% (2/172) disagreement in females (Figure
6).

App Reuse and Sharing
We measured more than 70% agreement in all three items
measuring intention to reuse or share the Smokerface app. The
majority of the students expressed a desire to show the app to
other people (271/306, 88.7% agreement and 10/306, 3.4%
disagreement), would like to have the app on their mobile
phones (215/306, 70.3% agreement and 27/306, 8.9%
disagreement), and planned to try the app on themselves again
later on (221/306, 72.4% agreement and 19/306, 6.2%
disagreement). These results did not vary notably in males
versus females.

Global Feedback
Almost all participants expressed that they perceived the
intervention as fun: 99.3% (304/306) agreement, 0.0% (0/306)
disagreement, and 0.7% (2/306) neutral (Figure 5). Almost all
also stated that they learned new benefits of nonsmoking: 98.0%
(300/306) agreement versus 1.3% (4/306) disagreement (Figure
5). A large majority also reported that they agree/totally agree
that smoking would have negative effects on their appearance
(305/306, 99.7%) and that the Smokerface app motivates people
to quit smoking (275/306, 89.8%). These results were similar
between males and females, except for a higher female
agreement on the item “Smokerface app motivates other people
to quit smoking”: 84.3% (113/134) agreement and 3.7% (5/134)
disagreement in males versus 94.1% (162/172) agreement and
1.8% (3/172) disagreement in females (Figure 6).

Figure 5. Survey results of the whole sample.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 |e10234 | p.35http://publichealth.jmir.org/2018/3/e10234/
(page number not for citation purposes)

Bernardes-Souza et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Survey results of male versus female participants.

Data Obtained From Medical Students
Our process evaluation conducted among all of the six
volunteering medical students via a short questionnaire after
every classroom visit revealed that 100% of the secondary
school students received the mirroring intervention as outlined
in the methods section. All of the medical students were able
to have empathic communication with the students, regarded
the intervention as enjoyable, and said it motivated them to
deliver smoking cessation advice to future patients.

Discussion

Principal Considerations
Mobile apps are used, evaluated, and optimized in smoking
cessation settings [29-52] while the number of completed
randomized trials remains scarce. Mobile phone apps in
school-based prevention settings present a potential new way
of delivering effective interventions that remain with the pupils
after the classroom visit is finished. In Brazil specifically,
approximately 85% of Brazilian adolescents and young adults
(10- to 24-year-olds) owns a smartphone according to the
Brazilian Institute of Geography and Statistics.

The Intervention in the Context of the Theory of
Planned Behavior
The theoretical background of the participant-centered mirroring
intervention includes increasing perceived self-efficacy of using
the app, which has been proven to encourage repetitive use and
is associated with the effectiveness of an intervention according

to the theory of planned behavior [53]. Accordingly, 72.4% of
the students fully agreed or agreed directly after the intervention
that they wanted to use the app again on their own despite the
one-time-use nature of the app and the fact that most of them
had used the app at least twice already. By causing direct peer
group and teacher reactions to the intervention itself, the
subjective norm is affected, which also predicts adolescent
smoking [53].

The theory of planned behavior identifies perceived behavioral
control as the strongest predictor of smoking onset (eg, if
students think they could refuse a cigarette successfully). To
this end, an age-appropriate reason not to smoke was integrated
into the student community by both the name of the app,
“Smokerface”, and the fact that it was installed on most students’
devices. A majority (89.8%) of the students stated that the app
was an appropriate tool to convince peers to quit smoking when
asked after the intervention. Also, many students would refer
to smokers as “smokerfaces” or stated that they did not want to
be a “smokerface,” which is an age-appropriate reason to decline
a cigarette if offered by a peer.

Gender Differences
Both genders agreed in most categories, which is consistent
with recent literature suggesting that appearance aspects play
a major role for self-esteem in male as well as in female
adolescents. While females tend to be more susceptible to
appearance aspects in the past, the differences between the two
sexes appear to assimilate [28,54,55].
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Still, in this study a larger fraction of female participants agreed
that the Smokerface app motivates other people to quit smoking
(84.3% agreement in males vs 94.1% agreement in females;
Figure 6) and also perceived the reactions of their classmates
as a stronger motivation for abstinence (81.2% agreement in
males vs 90.0% agreement in females; Figure 6), indicating a
higher perception in females of subjective norms reinforcing
the importance of their outward appearance.

Limitations
Our results stem from anonymous self-reports via
paper-and-pencil questionnaires filled out after the intervention.
While anonymity decreases social desirability bias in
self-reports, they may not be regarded as objective as externally
measurable markers (eg, cotinine saliva or carbon monoxide
testing). Furthermore, handing out the questionnaires after the
intervention rather than before might have provoked a social

desirability bias despite anonymity. In addition, cross-sectional
data without a control group or follow-up cannot determine
effectiveness. Thus, the authors plan to conduct a randomized
trial [24].

Conclusion
The facial-aging intervention was effective in generating an
increased motivation to stay away from tobacco in Brazilian
adolescents. The predictors measured indicated an even higher
prospective effectiveness in southeast Brazil than in Germany
(over 90% of agreement in Brazil vs over 60% of agreement in
Germany on the items that measured motivation to remain
abstinent) in accordance with the theory of planned behavior.
Medical students are capable of complete implementation of
the intervention. A randomized controlled trial measuring
prospective effects in Brazil is planned as a result of this study
[24].
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Abstract

Background: The recent rise in popularity and scale of social networking services (SNSs) has resulted in an increasing need
for SNS-based information extraction systems. A popular application of SNS data is health surveillance for predicting an outbreak
of epidemics by detecting diseases from text messages posted on SNS platforms. Such applications share the following logic:
they incorporate SNS users as social sensors. These social sensor–based approaches also share a common problem: SNS-based
surveillance are much more reliable if sufficient numbers of users are active, and small or inactive populations produce inconsistent
results.

Objective: This study proposes a novel approach to estimate the trend of patient numbers using indirect information covering
both urban areas and rural areas within the posts.

Methods: We presented a TRAP model by embedding both direct information and indirect information. A collection of tweets
spanning 3 years (7 million influenza-related tweets in Japanese) was used to evaluate the model. Both direct information and
indirect information that mention other places were used. As indirect information is less reliable (too noisy or too old) than direct
information, the indirect information data were not used directly and were considered as inhibiting direct information. For example,
when indirect information appeared often, it was considered as signifying that everyone already had a known disease, leading to
a small amount of direct information.

Results: The estimation performance of our approach was evaluated using the correlation coefficient between the number of
influenza cases as the gold standard values and the estimated values by the proposed models. The results revealed that the baseline
model (BASELINE+NLP) shows .36 and that the proposed model (TRAP+NLP) improved the accuracy (.70, +.34 points).

Conclusions: The proposed approach by which the indirect information inhibits direct information exhibited improved estimation
performance not only in rural cities but also in urban cities, which demonstrated the effectiveness of the proposed method consisting
of a TRAP model and natural language processing (NLP) classification.

(JMIR Public Health Surveill 2018;4(3):e65)   doi:10.2196/publichealth.8627

KEYWORDS

influenza surveillance; location mention; Twitter; social network; spatial analysis; internet; microblog; infodemiology; infoveillance

Introduction

Background
The increased use of social networking platforms entails more
widely shared personal information. Twitter, a microblogging

platform that enables users to communicate by updating their
status using 140 or fewer characters, has attracted the attention
of many researchers and service developers as a valuable
personal information resource. Consequently, various
approaches for analyzing social data (called as social monitoring
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[1]) have been presented so far. These approaches have
presented an important shared premise that Twitter users can
be human sensors for event detection [2], and the feasibility of
these approaches has been demonstrated on various occasions
such as earthquakes [2-4], political elections [5-7], stock market
fluctuations [8], and outbreaks of various infectious diseases
[9-33]. Among them, the study of social monitoring of
health-related information shared on the internet is referred to
as infodemiology [1,34] and gathers much attention in terms of
practical needs.

Objective
This study particularly examined such applications for detecting
disease epidemics, by taking advantage of the swiftness of the
information transmission on Twitter. Numerous Twitter-based
disease detection and prediction systems have been developed
worldwide. However, these systems have several weaknesses.
One significant deficit is population distribution imbalance
owing to the fact that most social networking service (SNS)
users reside in urban areas, resulting in analysts facing difficulty
getting sufficient amounts of data from rural areas. For example,
user population of Japan is strongly concentrated in a few central
cities such as Tokyo and Osaka. Specifically, the population of
Tokyo is estimated to be 13.515 million (about 11% of Japan’s
total population) [35]. Other users live outside these areas, in
less populated regions of Japan. This population bias results in
difficulties in obtaining consistent performance. Figure 1 shows
the geographic distribution in Japan of 7,666,201
influenza-related tweets for the period from 2012 to 2015. The
distribution is skewed because rural areas have fewer young
people than the cities. For instance, the number of young
in-migrants (aged 15-29 years) from other areas to Tokyo was
20.56% as of 2014. The other areas except Osaka and Nagoya
basically suffer from an exodus of young people [36]. Therefore,
fewer SNS users are available in the rural areas.

To overcome this skewed distribution problem, information
from a broader range of targets than that used in earlier studies
can be utilized. One solution is to use indirect information
[37,38] that had been discarded in previous studies related to
Twitter-based disease surveillance [15,26-31,39]. Examples of
such indirect information are as follows:

1. My friend in Hokkaido caught the flu.
2. NEWS: Classes in Hokkaido have been suspended because

of the flu.

The fundamental idea is presented in Figure 2. Although tweets
are concentrated in the urban areas, indirect information covers
wider areas. However, indirect information is unreliable
(sometimes too noisy or too old). In example (1) above, it is
unknown when the friend caught the flu. And in example (2),
the flu had already spread to the area. Due to the difficulties
presented above, previous studies did not use such indirect
information to any significant degree.

An example of tweet timelines and a patient timeline is
presented in Figure 3. Note that each timeline is normalized
based on the maximum value of a season. Direct information
(black dashed line) shows a similar timeline to the patient
timeline (gold standard; red area). However, before the peak of

epidemics, the amount of direct information increases a bit,
leading to overestimation errors. In addition, after the peak of
epidemics, the amount of direct information decreases, leading
to underestimation errors. On the other hand, the timeline of
the linear combination of direct and indirect information (blue
line) shows complex phenomena: it has many and sometimes
sudden peaks (eg, February 27, 2013), which would be caused
by news spreading and so on. Apparently, indirect information
is difficult to use.

To aggregate direct information and indirect information in a
sophisticated way, this study employed a different approach
that specifically examines the relation between indirect
information and the human motivation to tweet. The approach
considers that after the peak of epidemics, the topic of influenza
goes out of fashion, inhibiting the motivation of people to tweet
about the flu. Consequently, a more similar timeline (red line)
to the patient timeline (gold standard; red area) than that of the
direct information timeline can be obtained as shown in Figure
3. It also could screen out sudden peaks of the amount of indirect
information.

Another difficulty is the detection of the degree of the
propagated information. This study specifically examines the
amount of indirect information because it indicates that people
in different places also know about the event. Consequently,
this study made the following assumption: the degree of
propagation (popularity) is correlated with the amount of indirect
information. According to the previous study by Aramaki et al
[15], most people report influenza information precisely in the
early stage of an influenza season. However, as the indirect
information is propagated widely, most people know about the
influenza epidemic and become insensitive to the event. We
designate such deactivated people as trapped sensors. This study
investigates the degree to which this model improves the
performance of the event detection.

The objective of this study was to handle indirect information
to estimate the trend of the number of influenza patients in each
area and each season. This estimation would be useful in
satisfying practical needs not only in the industry but also of
individual consumers, such as the supply control of vaccines
and products for disease prevention or treatment. To study this,
we built a state-of-the-art Twitter-based influenza surveillance
system. Our contributions are 2-fold:

1. We reconfirmed the contribution of existing techniques.
The existing techniques mainly consist of 2 main parts:
tweet classification based on natural language processing
(NLP) techniques and the use of direct information
comprising global positioning system (GPS) information
and profile information (PROF).

2. Subsequently, we evaluated the proposed model that
aggregates indirect information to direct information.

Although a Twitter platform based on the Japanese language is
used in this study, the proposed model for aggregating social
sensors is universal, as they do not depend on a specific platform
or language because no platform and language-specific
technique are used. Note that the proposed model does not
always work better under all conditions; we at least showed that
our results targeted larger number of areas (47 areas) compared
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with previous studies to achieve a higher accuracy on an average.

Figure 1. Population bias in Twitter-based influenza surveillance. According to the geographic distribution in Japan of 7,666,201 influenza-related
tweets for the period from 2012 to 2015, most Twitter users are in urban cities (such as Tokyo and Osaka). Other cities are adversely affected by a
shortage of data that biases influenza detection there.

Figure 2. Most social sensor–based approaches consider people as sensors (center and right). Whereas previous social sensors exploited only direct
information, the proposed method uses indirect information (right).
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Figure 3. Amounts of direct and indirect information in a tweet timeline in Hiroshima from November 1, 2012 to May 31, 2013. The black dashed line
shows the timeline of direct information (BASELINE+PROF+NLP), the blue line shows the timeline of direct information and indirect information
that are aggregated in a naive way (LINEAR+NLP), the red line shows the timeline of direct information and indirect information that are aggregated
by the proposed model (TRAP+NLP), and the red area shows gold standard timeline. The x-axis shows the date, and the y-axis indicates the tweet ratio
and the patient ratio (normalized by the max value in the season). GPS: global positioning system; PROF: profile information; NLP: natural language
processing.

Methods

System Overview
The system consisted of 3 modules to analyze given tweet data:
a positive or negative (P or N) classification module, a location
detection module, and a data aggregation module. For the
aggregation, we used 2 methods using 3 types of location
information: a LINEAR model and a TRAP model.

Tweet Data Collection
We collected the influenza-related tweets written in Japanese
via the Twitter streaming application programming interface
(API) for 5 years (from August 2, 2012 to March 1, 2016). All
tweets comprised an influenza-related Japanese keyword
I-N-FU-RU (flu in Japanese). These data include noise tweets,
which are tweets that do not index an influenza patient. An
example of such noise tweets is influenza vaccination. To filter
out such influenza-negative tweets, the NLP module determines
whether a given tweet is positive or negative.

Natural Language Processing Module: Positive or
Negative
This module judges whether a given tweet is of an influenza
patient (positive) or not (negative). This task is a sentence binary
classification such as spam email filtering. This module applied
a binary classification based on support vector machine under
the bag-of-words representation. In the implementation, the
same classification model was used as in the study by Aramaki
et al [15]. To construct the model, 5000 tweets as a training set
were assigned one of the two labels: positive or negative (P or

N) by human annotators. In this labeling, tweets that met the
following 2 conditions are regarded as a positive case:

• Condition 1: Area—Although a tweet seems to report a
positive case, it may be not about a Twitter user himself or
herself but about others. In such a case, we assume that one
or more people with influenza would be likely to be present
around the Twitter user. Here, we regard around as a
distance in the same city. For cases in which the distance
is unknown, we regard it as negative. Due to this annotation
policy, the retweet type message is also negative.

• Condition 2: Tense—The tense should be present tense
(current) or recent past. Here, we define the recent past as
the prior 1-day period: the previous day.

The training set consisted of pairs of sentences and a label
(positive or negative). Samples of tweets with labels are shown
as follows:

1. BBC News: Okinawa has an influenza pandemic—(P, I)
2. Okinawa suffers a major outbreak of influenza—(P, D)
3. Retweet: My mother got the flu today—(P, I)
4. I got an influenza shot today—(N, D)
5. Doctor said influenza will be late in this season—(N, I)

Note that P/N denotes positive (P) or negative (N); D/I denotes
Direct information (D) or Indirect information (I). We use
retweet, too, in the same manner as normal tweets (non-retweet
tweets).

For classifying a test set of tweets, we split each Japanese
sentence into a sequence of words using a Japanese
morphological analyzer MeCab (ver.0.98) [40] with IPADic
(ver.2.7.0) [41]. The parameters for support vector machine
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including a polynomial kernel (d=2) were used in the study by
Aramaki et al [15].

Location Detection Module (Direct or Indirect)
We used 3 types of location information extracted from each
tweet: direct information, which includes GPS information and
profile information, and indirect information or referred location.

Direct Information: Global Positioning System (GPS)
Information
A tweet contains GPS-based data if a Twitter user allows the
use of the location function. However, most users turn this
functionality off for privacy reasons. Currently, the ratio of
tweets with GPS information is only 0.46% (35,635/7,666,201)
in our dataset.

Direct Information: Profile Information (PROF)
Several Twitter users describe their address in their profile
(PROF). We regard the Twitter user as near the profile address.
The proportion of tweets with profile location is 26.23%
(2,010,605/7,666,201). This information was used in the study
by Aramaki et al [15]. To disambiguate the location names, we
used a geocoding service [42] provided by Google Maps [43].
Specifically, we sent queries about Twitter users’ locale to
Google Maps and obtained results in JavaScript Object Notation
format. We wrote a simple parser in Python to parse these
returned results to get information about the country.

Indirect Information: Referred Location
Several tweets contain the location name in the contents, such
as “My friend in Hokkaido caught the flu.” This study used this
indirect information. To detect the location name in the contents,
we used a location name list consisting of area names and
famous landmarks. The proportion of tweets with indirect
information was 4.73% (362,349/7,666,201).

Thus, we use the location if the GPS information is available.
Otherwise, if a user profile information includes address data,
then we use that information. The address data are geocoded
by the geocoding service, API, provided by Google. Otherwise,
if the content of the tweet contains a location name (area names),
we consider it as the indirect information in the area.
Consequently, a tweet is classified into GPS, PROF, or indirect
information. Note that this classification is partly inclusive, as
a tweet is classified into GPS or PROF exclusively, and then
the tweet including location name is also counted as indirect
information inclusively.

Aggregation Module (LINEAR or TRAP)
A difficulty hindering the combination of different resources is
the question of how to combine them. This study investigated
2 methods: (1) simple aggregation (LINEAR model) and (2)
TRAP model, which is proposed for implementing our
assumption that people prefer to report new information and
that they are insensitive to already-propagated information.

LINEAR Model

A simple method to use indirect information is to aggregate
different types of information. In this model, we weigh the direct
information as more important than the indirect information.

We formalize the number of patients ILINEAR(a,t) in area a at
day t as follows:

ILINEAR(a,t) = wGPS · GPS(a,t) + wPROF · PROF(a,t) + wIND∑b∈A

IND(a,b,t) (1)

Where, GPS(a,t) is the number of tweets with GPS information,
PROF(a,t) is the number of tweets with profile information,
IND(a,b,t) is the number of tweets with indirect information,
and wGPS, wPROF, and wIND are weight parameters.

TRAP Model

This model includes the following 2 assumptions:

1. People prefer a new event and are, therefore, insensitive to
an already-propagated event.

2. The degree of propagation (popularity) is correlated with
the amount of indirect information.

The first assumption derives from human nature—people
hesitate to inform others of an already-known fact. For example,
if the Twitter stream is full of repeated influenza information,
then such a situation dampens enthusiasm to tweet similar
information.

The second assumption comes from the features of Twitter.
Most indirect information consists of retweet or news
information that tends to delay the direct information. The
volume of this type of information corresponds to the volume
of people who never tweet.

On the basis of these 2 assumptions, in the early stage of a
season, most social sensors are activated to report influenza
precisely (see Figure 4). Because the indirect information
spreads widely, most people become deactivated to the event
(Figure 4). We designated such deactivated people as trapped
sensors. Under these circumstances, although the number of
influenza tweets is small, the number of patients might be larger
than the tweet volume, because a trapped sensor might disregard
influenza.

We formalize the number of patients ITRAP(a,t) in area a at day
t using a popularity function, pop(a,t), as follows:

ITRAP(a,t)=(ILINEAR[a,t]) / (wUSERS·Na – wTRAP· log(pop[a,t] + 1)
(2)

pop(a,t)=∑t
d=1IND(a,d)

Where ILINEAR(a,t) is the linear model and variable Na is a set
based on the number of potential active tweeting users defined
by the number of tweets. A function, pop(a,t), returns a
cumulative number of the indirect information by the day t in
a season, indicating the degree of popularity of attention of a
crowd to influenza in the area a. wUSERS and wTRAP are weight
parameters.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 |e65 | p.45http://publichealth.jmir.org/2018/3/e65/
(page number not for citation purposes)

Wakamiya et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Concept image of TRAP model. (a) People actively report the influenza before epidemics. (b) However, most people lose interest in sharing
the direct information after epidemics because much indirect information already exists. In the proposed model, we call such people Trapped Sensors.

Table 1. Data description.

Number of tweets (size)DurationSeason

1,959,610 (729.4 MB)November 1, 2012-May 31, 2013SEASON 2012

501,542 (143.7 MB)aNovember 1, 2013-May 31, 2014SEASON 2013

2,736,685 (808.2 MB)November 1, 2014-May 31, 2015SEASON 2014

7,666,201 (2.275 GB)August 2, 2012-March 1, 2016ALL

aWe were unable to collect sufficient tweets on January 17, 2014 and January 18, 2014 in SEASON 2013 because of Twitter application programming
interface specification changes. In addition, the number of tweets throughout this season was consistently smaller than the other seasons.

Evaluation

Datasets
These results were obtained by using the Japanese infectious
disease data consisting of 2 types of data: one is Twitter data
for the proposed system, and the other is the timeline report of
the number of influenza patients.

Tweet Data
Our data comprised a collection of influenza-related tweets
spanning 5 years. Human annotators annotated the collected
tweet data into positive or negative labels, and using the support
vector machine-based classification model constructed in the
previous work [15] trained with a sample of 5000 randomly
selected tweets from an influenza tweet corpus from November
2008, we classified our collected data into positive or negative
label. For more precise information regarding the classifier and
the training set, please see the previous report by Aramaki et al
[15].

Because influenza epidemics appear in the winter, we split the
data as follows:

1. SEASON 2012: November 01, 2012 to May 31, 2013
2. SEASON 2013: November 01, 2013 to May 31, 2014
3. SEASON 2014: November 01, 2014 to May 31, 2015

Statistics of the tweet data are presented in Table 1. Note that
we were unable to collect sufficient tweets in SEASON 2013
because of changes in Twitter API specification, and we only
used what we collected.

Gold Standard Data
We used the number of influenza cases as the gold standard
data. In Japan, the Infectious Disease Surveillance Center [44]
gathers statistics of patients diagnosed with influenza by rapid
influenza diagnostic tests from about 5000 clinics and releases
summary reports called the Infectious Diseases Weekly Reports
[45]. The report presents the number of influenza patients for
each Japanese prefecture (47 areas) in a week. Therefore, this
test set enables week-based evaluation in 47 areas.

Models
We compared the 4 methods described below.

TRAP
TRAP is the proposed model. It detects disease epidemics by
considering the balance between direct information (GPS
information and profile information) and indirect information
(referred location). In this study, we set Na to a value based on
the number of potential active tweeting users for equation 2.
Afterward, we set the weight parameters wUSERS and wTRAP to
0.1 and 2.0, respectively, based on the results of preliminary
experiments.
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LINEAR
LINEAR is a model that uses GPS information, profile
information, and indirect location information together. In this
study, weight parameters wGPS, wPROF, and wIND in equation 1
were set to 1.0. Note that these values are not optimal
parameters. This study set the weighting parameters based on
heuristic and preliminary experimental results. To examine
optimal parameters for improving the validity of our model is
one of the future works.

BASELINE+PROF
This is a baseline model presented in the study by Aramaki et
al [15]. The approach uses GPS information and profile location:

IBASE + PROF(a,t)=GPS(a,t) + PROF(a,t) (3)

BASELINE
This is a simple baseline that uses only GPS information:

IBASE(a,t)=GPS(a,t) (4)

In addition to evaluation of the effectiveness of the positive or
negative classification (NLP technique), we also conducted with
or without the test. Thus, with the various combinations, 8
methods (4×2) were evaluated (see Multimedia Appendix 1).

Evaluation Metric
The evaluation metric used in this study is the correlation
(Pearson correlation coefficient) between the gold standard
values and the estimated values. This metric is also used in the

previous study [33]. The correlation-based evaluation is
unbiased under the assumption of equal population sizes.
Therefore, we can calculate the correlation coefficient, r, for a
given data array consisting of the gold standard data (the number
of patients) and the values that a model estimated based on the
number of tweets.

We regard strong positive correlation as high performance,
which comes from the previous studies [15,33]. Specifically,
we defined a strong positive correlation as r>.7, moderate
positive correlation as .4<r ≤.7, and weak positive correlation
as 0<r ≤.4.

Results

Overview
Evaluation was performed for 4 durations: (1) SEASON 2012,
(2) SEASON 2013, (3) SEASON 2014, and (4)
SEASON-TOTAL (all; 1-3). Thus, 1504 (8 methods×47 areas×4
durations) correlation coefficients were calculated.

Table 2 presents the results obtained. Table 2 and Table 3,
respectively, present the correlation coefficients of models with
and without NLP for the gold standard data. Note that most of
the correlation coefficients (99.60%,1498/1504) were positive,
and a high negative correlation was not observed. Specifically,
we discuss these results in terms of contributions of NLP-based
classification, profile information, and data aggregation by
LINEAR model and TRAP model.

Table 2. Values of the correlation coefficient (r) of methods with natural language processing.

SEASON-TOTALSEASON 2014SEASON 2013SEASON 2012Target and method

All areas

.70b.69b.70b.76bTRAP+NLPa

.50.53.55.70LINEAR+NLP

.69.67.68.74dBASELINE+PROFc+NLP

.36.48.37.33BASELINE+NLP

High-population areas (Top 10)

.75b.72b.77b.80bTRAP+NLP

.64.64.65.78dLINEAR+NLP

.75b.71d.77b.80bBASELINE+PROF+NLP

.53.63.60.55BASELINE+NLP

Low-population areas (Top 10)

.69b.71b.66b.75bTRAP+NLP

.43.48.46.62LINEAR+NLP

.64.65.61.70BASELINE+PROF+NLP

.25.35.26.21BASELINE+NLP

aNLP: natural language processing.
bHighest correlation coefficient in each target area and each SEASON.
cPROF: profile information.
dHigh correlation (r>.7).
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Table 3. Values of correlation coefficient (r) of methods without natural language processing.

SEASON-TOTALSEASON 2014SEASON 2013SEASON 2012Target and method

All areas

.65a.67a.63a.72aTRAP

.48.53.48.65LINEAR

.64.66.59.69BASELINE+PROFb

.35.48.34.29BASELINE

High-population areas (top 10)

.70a.71a.69a.75aTRAP

.61.63.60.72cLINEAR

.70a.70.69a.75aBASELINE+PROF

.50.63.56.44BASELINE

Low-population areas (top 10)

.60a.64.61a.71aTRAP

.40.46.41.58LINEAR

.59.65a.52.65BASELINE+PROF

.25.35.23.20BASELINE

aHighest correlation coefficient in each target area and each SEASON.
bPROF: profile information.
cHigh correlation (r>.7).

Contribution of Natural Language Processing–Based
Classification (TRAP Vs TRAP+NLP)
To evaluate the contribution of NLP for positive and negative
classification, we compared the results of TRAP in Table 3 and
TRAP+NLP in Table 2. Although both methods are strongly
correlated with the gold standard data, TRAP+NLP (r=.70 in
SEASON-TOTAL) is predominantly higher than TRAP (r=.65).
This result demonstrates the contribution of NLP.

In addition, TRAP+NLP and all other models with NLP
(BASELINE+NLP, BASELINE+PROF+NLP, and LINEAR+
NLP) achieved better detection performance using the NLP
classifier.

Although methods with NLP worked well to estimate influenza
epidemics, almost half of the tweets were removed. This might
indicate that the NLP-based classification used in this domain
(influenza or not) is basically simple, so it must be improved.

Contribution of Profile Information (BASELINE+NLP
Vs BASELINE+PROF+NLP)
To evaluate the contribution of profile information, we compared
BASELINE+NLP with BASELINE+PROF+NLP. As shown
in Table 2, the correlation coefficient of BASELINE+
PROF+NLP (r=.69 in SEASON-TOTAL) is much higher than
that of BASELINE+NLP (r=.36) through all SEASONs. This
fact suggests that the profile information is highly related to
improving the performance in detecting influenza epidemics.
However, BASELINE+NLP achieved lower correlation in this
study than in Aramaki et al [15]. One of the possible reasons
would be that the model did not consider an area

(prefecture)-level estimation, so it did not work well in several
areas that did not have enough number of tweets.

As described above, both NLP classification and profile
information improved the performance to detect influenza
epidemics. This result shows that the combination of these
techniques (BASELINE+PROF+NLP) achieved higher
performance.

Contribution of Indirect Information in LINEAR
Model (BASELINE+PROF+NLP Vs LINEAR+NLP)
To evaluate the contribution of indirect information in the
LINEAR model, we compared the performance of
BASELINE+PROF+NLP with LINEAR+NLP. Although the
performance of both methods was medium, the correlation
coefficient of LINEAR+NLP (r=.50 in SEASON-TOTAL) is
lower than that of BASELINE+PROF+NLP (r=.69) through
all SEASONs, as shown in Table 2. This point indicates the
difficulty inherent in detecting influenza epidemics solely by
adding indirect information in a naive manner.

Contribution of Indirect Information in TRAP Model
(BASELINE+PROF+NLP Vs TRAP+NLP)
To evaluate the proposed model, the TRAP model, we compared
the respective performances of TRAP+NLP and BASELINE+
PROF+NLP, which were better than LINEAR+NLP.

In fact, TRAP+NLP exhibited the highest correlation coefficient
among the models, indicating that it achieved the best
performance for influenza epidemic detection on the gold
standard data. This, in turn, suggests that TRAP model methods
effectively contribute to the exploitation of both direct and
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indirect information from social sensors to detect disease
epidemics accurately.

Discussion

Few Tweets After Flu Peak
The fact that the TRAP model outperforms the LINEAR model
indicates that when influenza becomes a hot topic, people do
not talk about it, which shows the aspect of human nature in
which people become bored quickly with the news. Similar
phenomena have also been presented from a psychological
viewpoint. Most studies showed rapid propagation of rumors
(especially bad news) and their short life [46-48]. Among
various SNSs, Twitter is an extremely fast media. Therefore,
the life of news on this platform might be shorter than other
existing news. In other words, people might hesitate to tweet
an already-known fact.

This model has sufficient room for application to additional
studies. For example, we simply regard the simulation of the
referred tweet as news. Better methods using other media, such
as news website information, are reasonable. The manner of
estimation of the potential tweet users can also be improved by
considering more realistic data.

Effectiveness of Each Module
From results obtained from the experiment presented in the
previous section, we observed the following 3 findings:

1. Effectiveness of NLP-based classification.
2. Effectiveness of direct information and indirect information.
3. Effectiveness of data aggregation by TRAP model.

We first reconfirmed the 2 findings that were already studied
in the previous work [15]—the effectiveness to apply NLP-based
tweet classification and the effectiveness to use direct
information. Then, we evaluated the effectiveness to use indirect
information, in addition to direct information and to embed this
information into TRAP model that are the main contributions
of this paper.

Another novelty of this study is high-resolution geographic
analysis. Therefore, we discuss the above effectiveness for each
area throughout this section. Multimedia Appendix 2 portrays
temporal changes of the gold standard data (red bar plot) and
results of TRAP+NLP (red line), LINEAR+NLP (gray line),
and BASELINE+PROF+NLP (blue line) for 3 SEASONs in 47
areas in Japan. Note that our evaluation was conducted by
comparing the correlations between a tweet timeline and a
patient timeline in an area. We assumed that the comparison
would not be biased if the population sizes were comparable.

Effectiveness of Natural Language Processing–Based
Classification
We determined the effectiveness of NLP-based classification
by comparing the performance of the methods with NLP for
the top-10 high-population areas in Table 2 with the performance
of the methods without NLP for the top-10 low-population areas
in Table 3. The rank of the population of areas is presented in
Multimedia Appendix 3.

In urban areas such as Tokyo and Osaka, the TRAP model
(without NLP) performance was sufficiently high. In fact, the
correlation coefficient of TRAP was equal to or higher than .7.
For the other results, all correlation coefficient values were
higher than .5, reflecting medium correlation.

However, in more rural areas such as Shimane and Toyama, no
significant improvement was observed when NLP was used. In
particular, little difference in performance was found between
BASELINE+NLP and BASELINE. However, NLP never
worsened the performance, which motivates the use of NLP.

Effectiveness of Profile Information and Propagated
Information
The proposed method used 3 types of location information: GPS
information, profile information (as used by previous studies),
and referred location. We discussed the effects of exploiting
the referred location (as indirect information), as well as GPS
information and profile information (as direct information).
From Table 2, we observed that the indirect information might
not be as important in high-population areas such as Tokyo and
Osaka. For example, BASELINE+PROF+NLP realized a high
correlation (r>.7) in urban areas on an average. In such areas,
even BASELINE+NLP only using GPS information had medium
correlation.

In contrast, using indirect information was effective in rural
areas. Although BASELINE+PROF+NLP was determined as
just medium correlation (r ≤.7) through all SEASONs,
TRAP+NLP showed high correlation in SEASON 2012 and
SEASON 2014, as shown in Table 2. The results for SEASON
2013 might be affected by the lack of tweet data, as shown in
Table 1.

This result might be caused by a common pattern by which
much direct information is available in urban areas. In contrast,
because a sufficient amount of direct information is not available
from rural areas, there is some lack of exploitation of indirect
information.

Effectiveness of Data Aggregation by TRAP Model
We can discuss the effectiveness of the TRAP model by
comparing the correlation coefficients of the top-10
high-population areas and that in the top-10 low-population
areas in Table 2.

In urban areas, the performance of 2 methods related to the
TRAP model (TRAP+NLP and TRAP) was the highest among
the others. The correlation coefficients of the 2 methods related
to the LINEAR model (LINEAR+NLP and LINEAR) were less
than .7, except in SEASON 2012. For example, for Tokyo
(AREA13) and Osaka (AREA27) in Multimedia Appendix 2,
TRAP+NLP matched the gold standard data well. In contrast,
LINEAR+NLP has some gaps. These results confirm the
effectiveness of TRAP model for tweets in urban areas.

In rural areas, the performance of the methods related to the
TRAP model (TRAP+NLP and TRAP) was also the highest.
Most of the correlation coefficients were higher than .6. In
particular, the performance of TRAP+NLP in the rural areas
was higher than that of the LINEAR+NLP in the urban areas
on an average. For example, for Shimane (AREA32) and
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Toyama (AREA18) in Multimedia Appendix 2, the results of
both TRAP+NLP and LINEAR+NLP in SEASON 2012 matched
the gold standard well. However, the results in other SEASONs
have partial gaps. The results of LINEAR+NLP are affected by
the small number of tweets. For such areas, we improve the
performance by adjusting the weight parameters adequately.

Overall, we confirmed the effectiveness of aggregation using
the TRAP model that does not treat the 3 types of location
information in the same manner but instead distinguishes
referred location as indirect information and uses it differently.

Relation Between Volume of Tweets and Performance
The relation between population and the detection performance
presents an important finding. Multimedia Appendix 3 presents
the relation between population (blue bar plot) of each area and
performance (lines). The population is the number of tweets.
The performance is the correlation coefficient. This figure
compares TRAP+NLP (red line) with BASELINE+PROF+NLP
(dotted black line).

The results show that the performance of TRAP+NLP was
higher than that of BASELINE+PROF+NLP in urban areas.
Specifically, the top 17 high-population areas (from Tokyo
[AREA13) to Ibaraki [AREA8]) exhibited high correlation
(r>.7). In these areas, more than 400 tweets were emitted.

However, other areas have large performance variances.
Although both methods sometimes stagnate at the same
performance level, in most cases, TRAP+NLP outperforms
BASELINE+PROF+NLP. In Aomori (AREA2), Nagano
(AREA17), Oita (AREA44), Nagasaki (AREA42), and
Yamanashi (AREA16), the TRAP model achieved higher
performance (r>.7) than that of the BASELINE+PROF+NLP
(r ≤.7). One typical example is Aomori of SEASON 2012 and
SEASON 2013. The graph of Aomori in Multimedia Appendix
2 shows that TRAP+NLP was able to detect a high level of
continuous epidemic in SEASON 2013, indicating the
effectiveness of the TRAP model. However, as described
previously, sometimes it was unable to detect tweets after an
epidemic. This remains a subject of future work.

Although the TRAP model achieved higher performance than
BASELINE+PROF+NLP, the performance was of a medium
level (.4<r≤.7) in Niigata (AREA15), Fukui (AREA 20), Tochigi
(AREA 9), Mie (AREA24), Iwate (AREA 3), Kagoshima
(AREA 46), and 10 other areas. For example, the graph of Fukui
in Multimedia Appendix 2 shows that TRAP+NLP was unable
to detect the sequential influenza epidemics in SEASON 2012.
There were gaps in other SEASONs. Therefore, the average
performance through all SEASONs was medium. TRAP model
exhibited poorer performance than BASELINE+PROF+NLP
in SEASON 2013 in only one (Kumamoto [AREA 43]) area
(see Kumamoto in Multimedia Appendix 2). One of the reasons
is medical treatment failure in Kumamoto in the SEASON. That
was domestic news, but tons of news on the failure appeared in
Twitter stream, causing the bias.

The results show the strong advantages of TRAP+NLP in
high-population areas. More importantly, TRAP+NLP never
shows worse performance, except in one area. These findings
are expected to contribute to similar SNS-based surveillance.

Parameter Optimization
An important issue was the optimization of parameters used in
the model. TRAP model required 5 parameters, wGPS, wPROF,
wIND, wUSERS, and wTRAP, as shown in the equations 1 and 2. As
for the 2 parameters wGPS and wPROF, we set to 1.0, as
comparative models, BASELINE and BASELINE+PROF, set
the same weightings. Accordingly, we also set wIND to 1.0, so
the choice of these weightings would be reasonable.

We optimized the other 2 parameters, wUSERS and wTRAP, in
preliminary experiments. We observed changes in the correlation
coefficients of high-population areas (top 10) and
low-population areas (top 10) by adding 0.01 to the parameter
value wUSERS from 0 to 1.0. As a result, 80% of areas (16/20)
were found to have a high correlation (r>.7) when wUSERS was
0.05 and more. The observation for the parameter wTRAP was
conducted in the same way. Specifically, we tested by adding
1.0 to the parameter value wTRAP from 0 to 3.0. Consequently,
we set wUSERS and wTRAP to 0.1 and 2.0, respectively, so that
this pair could achieve the best performance.

Limitations and Future Direction
The proposed method has several limitations. First of all, we
have methodological limitations when crawling Twitter data
and detecting tweet location. Our Twitter crawling method relies
on a specific keyword I-N-FU-RU (flu in Japanese). Further
research should crawl all tweets of each person so that we can
conduct more detailed analyses, including moving trajectory
analysis of a person, a recovery process analysis, and so on.
Furthermore, this study handles only the location name as
indirect information, but various expressions have been used
in indirect messages. Therefore, it would be required to apply
location estimation techniques for improving the accuracy of
this model.

We also have limitations to use self-reported data by social
media users. Generally, social media users are biased toward
young- to middle-aged demographics so that their data may not
represent the population of interest. In addition, social media
data are influenced by a variety of user-dependent factors and
surroundings. Thus, this study focused on propagated
information about the flu and attempted to embed the sensitivity
of social sensors in each stage during epidemics of the flu into
a model. However, the sensitivity of social sensors can be
affected by multiple factors. For example, if a severe case or
death case was reported in a particular subgroup of the
population, this event would affect and resensitize trapped
sensors. Although this study assumed a straightforward case
that a trapped sensor had never been resensitized in a season,
there is room for considering relations between the
(re)sensitivity of social sensors and the gravity of events.
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Table 4. Area resolution of surveillance.

Data size (million tweets)Target (number of areas)Location

300Japan (1)Aramaki [15]

1.9aUnited States (10)Achrekar [26]

0.5United States (1)Culotta [27]

300Japan (1)Kanouch [28]

0.14Europe (1)De Quincy [29]

24aUnited States (1)Doan [30]

3Europe (1)Szomszor [31]

aIndicates the number of users in millions.

To improve the detection performance for disease epidemics,
it is important to implement functions that enable consideration
of various effects related to geographic relations among areas:
adjacency (neighborhood or not), accessibility (easy to access
or not), and isolation (island or not). Furthermore, this study
was conducted to elucidate the current situation of disease
epidemics. To predict the spread of disease, we need to develop
a method through integration with various prediction models.
This would enable us to identify outbreaks of infectious diseases
with high accuracy before a wider outbreak.

Comparison With Prior Work

Social Sensors for Health-Related Events
Social media are used to detect various events, such as
earthquakes [2-4], political elections [5-7], and stock prices in
a market [8]. Among the various applications, the study on
health-related event detection referred to as infodemiology [1,34]
has been gaining much attention from researchers in areas such
as air pollution [49], Web-based doctor reviews [50], West Nile
virus [9], cholera [10], Escherichia coli outbreak [11], dengue
fever outbreak [12], and influenza [1,13-33]. One review of the
literature reported that half of the SNS-based surveillances are
related to influenza (15 of 33 papers) [25]. That is true because
influenza is a major worldwide public health concern. In
particular, unexpected influenza pandemics, which have been
experienced 3 times already in the twentieth century (eg, Spanish
flu), are global issues.

Twitter is the most frequently used social medium for influenza
detection [13-33]. Studies have consistently demonstrated a
high correlation between the number of influenza patients and
the actual influenza-related tweets. However, most studies
targeted only country-level detection. Furthermore, detailed
surveillance of areas is rarely conducted, as shown in Table 4.
One reason is the volume shortage of tweets in small areas.
Therefore, it remains unknown whether a small rural area can
achieve the same high performance. One advantage of this study
is its investigation performance in areas with small populations.

Location Estimation
Location estimation including estimation of the place of
residence of someone is an important issue in this study.
Although the simplest and most reliable method is to use GPS
information, many difficulties can arise. For instance, many
users turn off this functionality to maintain the privacy of their

information. As a result, location estimation from the SNS
original text is necessary. Related studies identified 2 difficulties
in location estimation of SNS texts: detecting a location name
in tweet messages and disambiguating the location names.

To address these challenges, a collection of location names is
necessary. Usually, Wikipedia is used as the basis of a location
name dictionary. We also used a location name dictionary
obtained from Japanese Wikipedia. As for the location name
disambiguation, several methods have been studied [51].
Location-indicative words from tweet data are found by
calculating the information gain ratios. Earlier research effort
shows that words improve the user location estimation
performance. They concluded that the procedure requires little
memory: it is fast. Moreover, lexicographers can use it to extract
location-indicative words. A probabilistic framework was
developed to quantify the spatial variation manifested in search
queries [52], which brings them to spatial probabilistic
distribution models. One study [53] estimated geographic
regions from unstructured, nongeo-referenced text by computing
a probability distribution over the surface of the Earth. Another
study [54] estimated a city-level user location based purely on
the content of tweets, which might include reply tweet
information, without the use of any external information, such
as a gazetteer or internet protocol (IP) information. Two
unsupervised methods [55] have been proposed based on notions
of nonlocalness and geometric localness to prune noisy data
from tweets. One report [56] described language models of
locations using coordinates extracted from geotagged Twitter
data. Although this study used geocoding services provided by
Google, incorporating such techniques can support future
studies.

Conclusions
This paper proposed a novel approach that uses not only direct
information but also indirect information that mentions other
places for disease epidemic prediction. We assumed a model
by which the indirect information inhibits direct information.
In the experiments performed for high-resolution areas
(prefecture level), the proposed approach exhibited improved
detection performance not only in rural cities but also in urban
cities, which demonstrated the effectiveness of the proposed
method consisting of a TRAP model and NLP classification.

This model offers sufficient room for additional study. For
example, although this study handles only location name as
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indirect information, various expressions have been used in
indirect messages. Therefore, applying location estimation
techniques could improve the accuracy of this model. Another
limitation of this study is the Twitter crawling method that relies
on a specific keyword I-N-FU-RU. This method cannot allow
the collection of a timeline of tweets of a person. If we crawled
all tweets of each person, it could conduct more detailed

analyses, including moving trajectory analysis of a person, a
recovery process analysis, and so on.

Future work will study worldwide influenza surveillance.
Furthermore, we plan to apply this method to other epidemic
surveillances and to establish a novel method by integrating
various models to exploit their prediction accuracy.
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Multimedia Appendix 1
Models used for data aggregation. Note that NLP is the positive/negative classifier, GPS is GPS information, PROF is profile
information, and IND is indirect information.
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Multimedia Appendix 2
Temporal changes of positive influenza tweets for 3 SEASONs in 6 prefectures in Japan. The x-axis shows the date from the
beginning of SEASON 2012 to the end of SEASON 2014, whereas the y-axis shows the tweet ratio and the patient ratio (normalized
by the max value in each season). The red line shows the timeline of direct information and indirect information that are aggregated
by the proposed model (TRAP+NLP), and the red area shows gold standard timeline. The black dotted line shows the timeline
of direct information (BASELINE+PROF+NLP). The blue line shows the timeline of direct information and indirect information
that are aggregated in a naive way (LINEAR+NLP). PROF: profile information; NLP: natural language processing.
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Multimedia Appendix 3
Relation of the number of tweets (blue bar) and correlation coefficient of TRAP+NLP (red line) and BASELINE+PROF+NLP
(dotted black line) for each area. Areas are ordered by populations based on the number of tweets. The x-axis shows the area; the
y-axis indicates the correlation coefficient (left side) and the number of tweets (right side). In most areas, the proposed approach
(TRAP+NLP) shows a higher correlation ratio than the conventional system. PROF: profile information; NLP: natural language
processing.
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Abstract

Background: Precise measurements of HIV incidences at community level can help mount a more effective public health
response, but the most reliable methods currently require labor-intensive population surveys. Novel mobile phone technologies
are being tested for adherence to medical appointments and antiretroviral therapy, but using them to track HIV test results with
automatically generated geospatial coordinates has not been widely tested.

Objective: We customized a portable reader for interpreting the results of HIV lateral flow tests and developed a mobile phone
app to track HIV test results in urban and rural locations in Rwanda. The objective was to assess the feasibility of this technology
to collect front line HIV test results in real time and with geospatial context to help measure HIV incidences and improve
epidemiological surveillance.

Methods: Twenty health care workers used the technology to track the test results of 2190 patients across 3 hospital sites (2
urban sites in Kigali and a rural site in the Western Province of Rwanda). Mobile phones for less than US $70 each were used.
The mobile phone app to record HIV test results could take place without internet connectivity with uploading of results to the
cloud taking place later with internet.

Results: A total of 91.51% (2004/2190) of HIV test results could be tracked in real time on an online dashboard with geographical
resolution down to street level. Out of the 20 health care workers, 14 (70%) would recommend the lateral flow reader, and 100%
would recommend the mobile phone app.

Conclusions: Smartphones have the potential to simplify the input of HIV test results with geospatial context and in real time
to improve public health surveillance of HIV.

(JMIR Public Health Surveill 2018;4(3):e11203)   doi:10.2196/11203

KEYWORDS

HIV surveillance; smartphones; mobile phones; geospatial data

Introduction

For the HIV/AIDS epidemic to be curtailed in a sustainable
fashion, it will be critical to increase diagnosis, awareness, and
tracking of HIV infections among the hardest hit,
resource-constrained countries. Precise measurements of HIV
incidences at a subnational level are instrumental in mounting

an effective global response [1], but the most reliable methods
currently require labor-intensive population surveys.

For HIV diagnostics, HIV rapid tests (which use lateral flow
test technology) are widely used for primary screening. These
tests are low cost, readily available, and can be performed in
field settings, but they have shown lower specificity and
sensitivity during field conditions as compared to laboratory
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evaluations, suggesting that there may be user variability in
performing and reading the test results. Furthermore, test results
are currently first entered by hand into a book and later
transcribed into a computer. This process can introduce data
entry errors and slows availability of the data for use by health
care providers and officials. There exists an opportunity, using
the latest technologies in mobile devices, to accurately record
HIV test results to improve efficiency in clinic operations,
improve surveillance and management of the disease at a
systems level, and ultimately reduce turnaround time to
commencement of antiretroviral therapy (ART). For example,
the availability of real-time HIV testing data could allow public
officials to rapidly identify local outbreaks of the disease and
implement a timely and effective public health response.

Africa accounts for 70% of the world’s population living with
HIV and close to two-thirds of newly infected individuals [2].
Currently, the region experiences uneven access to HIV tests,
long turnaround time of HIV testing, delayed time initiation of
ART, and poor retention and adherence with therapy [3]. The
high HIV incidences across sub-Saharan Africa mount pressure
on decentralized services, which have been underutilized [4,5],
in allowing infected individuals to know their status with
subsequent linkage to care. Increasing the capability of
decentralized testing will be critical in an effort to allocate
resources to people and places of greatest need [6,7] to achieve
an HIV-free generation (a goal of United Nations sustainable
development plans by 2030 [8]).

In Rwanda, detailed household surveys have indicated higher
HIV incidences than previously estimated [9] and point to the
need for more rapid and detailed characterization of incident
infections in planning for an effective national strategy for
at-risk populations. HIV incidence in Rwanda seemed to decline
after the 1990s with the provision of ART [9,10]. While 160,000
people in Rwanda receive treatment with ART [11], a recent
study highlighted the need to understand HIV incidence at a
more granular level than currently available in order to reduce
HIV infections in the country [9]. More specifically, the study
highlights the need for understanding HIV incidence
subnationally and within different populations [12], in contrast
to using uniform national models for planning HIV programs
at local levels that could present many biases [13]. In Rwanda,
a relatively low national HIV incidence (compared to other
sub-Saharan Africa countries) masks wide variations across
groups and demographics [14].

Novel mobile phone technologies are being developed and tested
to expand HIV care to decentralized settings [8,15-17]. While
some examples include mobile devices and diagnostics to
increase adherence to medical appointments [18-21] and to ART
therapy [22-28], most mobile health technologies for HIV [29]
focus on short message service (SMS) texting. While potentially
useful for different aspects of HIV management, these studies
did not focus on tracking of HIV test results, let alone doing so
with geospatial coordinates provided by mobile phones.
Technologies associated with smartphones (ie, mobile phones
with enhanced computing power that can run native software
programs and can connect to the internet) and mobile phone
apps have only been tested recently [30]. Despite the potential

of geospatial data on mobile phones, there are few studies on
leveraging this information to track HIV incident infections in
real time. If such geospatial data could be collected, they could
enable HIV test results to be linked to geospatial coordinates.
Studies in South Africa and Lesotho found that visualization of
georeferenced data (collected by analyzing existing sources of
information or by field surveys equipped with Global
Positioning System [GPS] receivers, respectively) has the
potential to efficiently guide HIV program operations [31,32].
In neither study were the objectives to link geospatial
information to HIV test results or to obtain the GPS coordinates
using mobile phones.

In this study, we paired a portable reader for interpreting the
results of HIV lateral flow tests with a mobile phone app to
track HIV test results in urban and rural locations in Rwanda.
In a point-of-care setting, a health care worker performs an HIV
rapid test. The technology tested in this study first enables the
health care worker to use a customized lateral flow reader (LFR)
to read the results of the HIV rapid test as positive or negative.
Second, the health care worker can instantly record within a
mobile app the HIV test result, and the result can be sent
instantly or at the next point of internet connection to the cloud.
After integration to a relational database stored on the cloud,
the results are immediately viewable with geospatial context
and in real time by health officials who can allocate resources
to local clinic workers efficiently in order to stop HIV outbreaks
at their onset. The results from the study aim to lay the
foundation for a scalable method to improve the efficiency and
quality of identifying HIV incidences quickly in developing
countries.

Methods

Development and Customization of Lateral Flow
Reader Hardware
We purchased 4 ESEQuant LFR readers (Qiagen Inc) for digital
interpretation of band intensities in lateral flow tests. The LFR
machines consist of 2 parts: main body and drawer. On the main
body, the screen and 5 buttons control the program that runs
the tests and displays the test results. For the drawer, we
designed and manufactured (via a 3D printer) a custom white
holder to fit the exact size of an Alere Ab/Ag combo test strip
(Abbott) for analysis. The customized LFR can read the
control/Ab/Ag lines shown on an Alere Ab/Ag combo test strip
and display the results.

The LFR can either work separately or remotely when connected
to a personal computer. In remote mode, several important
parameters such as incubation time, scanning positions, detecting
range, and detection limitation can be controlled by the software
and programmed into the reader. Using lateral flow tests with
HIV-positive and HIV-negative samples for calibration, we
customized the spatial positions of the 3 stripes of the
Ab/Ag/control lines. A built-in peak detection function of the
software would determine within the designated spatial positions
whether a line would be classified as present. We calibrated all
the LFRs with our customized method and provided the readers
to the testing sites for use (Figure 1 A-C).
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Figure 1. Step-by-step illustration of clinical testing. (A) App instructs user to perform an Alere HIV rapid test. (B) User performs a finger prick and
places a drop of blood on the lateral flow strip. (C) The HIV test is placed in a lateral flow test reader, which scans the test and produces a reading.
Here, the test result is negative, and the control line is present to indicate a valid test. (D) App displays the HIV rapid test model to be selected. (E) The
patient ID and test results are entered into the app. (F) Results are uploaded to the cloud either at the time of test or later when internet is available.

Design and Coding of Mobile Software
To develop a mobile app to electronically record and transmit
test results (Figure 1 D-F), we coded the app by using a
cross-platform development tool called React Native. React
Native allowed us to port the application, written in Javascript,
to both iOS and Android devices (although all mobile phones

used in this study were Android) while using platform-specific,
native implementations of features such as GPS location and
networking.

The mobile app used local storage drivers to save HIV test
results to the device in the absence of internet connection. Once
a connection was established, test results could be uploaded to
our internal PostgreSQL database running on Google’s Cloud
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Compute platform. PostgreSQL is an open-source relational
database with an emphasis on extensibility and standards
compliance. As a database server, its primary functions are to
store data securely and return that data in response to requests
from other software applications. We also added an intermediary
Node.js webserver running on Heroku to mediate the
communication between the mobile device and database. A
single HIV test result contained the following information:
patient ID, test ID, result (positive, negative, or invalid), time,
latitude, and longitude.

We used Knowi, an online data visualization tool, to view HIV
test results and create geographic heatmaps of patient test results.
Knowi connected directly to our internal database using
read-only database credentials. Knowi enables visualization,
warehousing, and reporting automation from PostgreSQL along
with other unstructured and structured data sources.

Ethics Review Approval
The study protocol was approved by the Rwanda National Ethics
Committee. Documents on patient consent, health care worker
consent, data confidentiality, patient questionnaire, and health
care worker questionnaire were approved by the committee.
The questionnaire for health care workers collected information
on the usability of the technology, while the questionnaire for
patients queried the demographics of the patients. In addition,
the consent form and questionnaire for patients were translated
into Kinyarwanda to facilitate interactions with patients who
were not fluent in English.

Study Setting
The study took place at 3 sites in Rwanda over 4 weeks in
February and March 2018. The 2 urban sites in Kigali were
Masaka District Hospital (DH) and Kibagabaga DH. One rural
site was Kabaya DH in the Ngororero District of the Western
Province of Rwanda. Kabaya DH has a capacity of 144 beds
and serves 188,902 inhabitants and is geographically difficult
to access due to the lack of reliable roads and bridges, especially
in the rainy season.

Recruitment and Training of Health Care Worker
Participants
At the 2 urban sites, we invited clinical and laboratory staff to
participate in the study. For the 2 sites in Kigali, 4 health care
workers in each facility (8 total) participated. In Masaka DH,
3 nurses and 1 lab technician participated (2 male, 2 female).
In Kibagabaga DH, 2 nurses, 1 lab scientist, and 1 midwife
participated (4 females). At Kabaya, we invited clinical and
laboratory staff to participate in the study, and 12 health care
workers at Kabaya participated: 5 A1 nurses, 2 A2 nurses, 4 lab
technicians, and 1 midwife (8 male, 4 female). (A1 refers to
completion of 3 years of postsecondary school, while A2 refers
to completion of only secondary school.)

Health care worker participants were trained in the following
modules: overview of project (background, aims, and
procedure), review of health care worker consent form and data
confidentiality agreements, demonstration of LFR,
demonstration of mobile app, review of patient consent form
(translated) and questionnaires for patients (translated) and

health care worker, and review of study plan. At the conclusion
of the trial, laboratory and clinical staff were interviewed using
the health care provider questionnaire.

Recruitment of Patients
Patients for the 3 sites came through maternity/gynecology and
outpatient departments and were scheduled to be tested for HIV
(Alere Determine HIV Combo+ Stat Pak, Abbott Laboratories)
through provider-initiated testing. All such adult patients (aged
21 years and older) during the study period were invited by
health care workers to enroll. Individual interviews were held
in a private space provided by the health facility to protect
subject confidentiality. After the study was introduced to the
patient, potential participants were informed in their mother
tongue about the objectives of the study and the fact that their
participation was voluntary. They were informed that they are
free to choose not to participate in the study or withdraw at any
time with no explanation required, and they will not suffer any
negative consequences for their decision. With guidance from
health care workers, those who agreed to participate reviewed
and signed an informed consent form in Kinyarwanda, their
mother tongue, and were provided 1000 RWF (US $1.15) as
compensation for their time. Completed consent forms were
stored separately from study documents, and names were not
recorded on any data documents reviewed in the study.

Operation of Technology
Health care workers performed the Alere Determine HIV-1/2
combo tests with a finger-pricked patient blood sample. The
completed test strip was placed into the customized and
precalibrated LFR, and the LFR digitally displayed
(unambiguously, as opposed to visual interpretation) a positive
or negative result. Results of the HIV tests as visually interpreted
were also recorded with pen and paper, and discrepancies
relative to the LFR result noted.

Next, the provider input a deidentified patient ID and test result
(positive, negative, or invalid) into the mobile app. We
purchased locally available mobile phones for the study. The
mobile phones were from Impress (Vertex; 60,000 RWF [US
$69]). As described previously, the mobile app assists in the
registration of patient test results alongside the location of testing
down to the street level. The data input by the health care
worker, alongside the GPS information, were saved into the
phone’s memory. The health care worker either uploaded this
information to the cloud database immediately (if internet
connectivity was available) or later (when internet connection
became available). Internet connectivity, which can be
intermittent, was not required for the test results to be recorded.

After each testing procedure, patients were interviewed by the
health care worker using the patient questionnaire in
Kinyarwanda.

Results

User Statistics
After approval of the study protocol by the Rwanda National
Ethics Review Committee, we worked with the Directors
General of the 3 sites to conduct the trial. Four health care
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workers at each urban site and 12 at the rural site were trained
in the objectives of the trial and the details of the protocol,
including issues related to patient consent and confidentiality.
From these sites, we enrolled 513 patients at Masaka DH and
596 patients in Kibagabaga DH, for a total of 1109 patients
across the 2 sites. For our rural site, we enrolled 1081 patients
at Kabaya DH. Remarkably, 100% of eligible patients who were
approached agreed to participate at Kabaya DH (similar to the
2 urban sites).

The trial took place over a 4-week period in spring 2018 Table
1. Of the patients whose HIV results were tracked, 91.51%
(2004/2190) of the results came with a phone-generated GPS
location. (We were also able to manually add the GPS location

for the remaining patients since we knew the location of the
testing.) The results that did not come with automatic GPS
coordinates came primarily earlier in the trial, when the location
settings on the phone were not set properly. The problems were
mostly resolved after switching “Turn on Location” to on and
restarting the phone. Also, a reading of result showed “invalid”
if the Alere test was untested, or more likely, if the drawer of
the reader was empty. The few invalid results came early in the
trial when 3 health care workers did not place the HIV test into
the reader or sufficiently firmly press the test down into the
housing; after a quick reminder of the procedure during the first
2 weeks, there were no more invalid results. Of the valid tests,
the LFR produced the same readings as visual interpretation in
100% of the cases (2166/2166), with 0 discrepancies.

Table 1. Summary of the trial data.

Recordings showing
positive HIV, n (%)

Invalid recordings, n (%)Recordings with GPS, n (%)Recordings without GPSa,
n (%)

Participants, nSites

39 (6.5)4 (0.8)451 (87.9)62 (12.1)513Masaka

9 (1.5)0 (0.0)564 (94.6)32 (5.4)596Kibagabaga

23 (2.1)20 (1.9)989 (91.5)92 (8.5)1081Kabaya

71 (3.2)24 (1.1)2004 (91.5)186 (8.5)2190Total

aGPS: Global Positioning System.

Table 2. Demographics of patients at each site. Questionnaires that did not record a gender or report the testing of HIV were excluded from the analysis.

Kabaya DHKibagabaga DHMasaka DHaCharacteristics

1081596513Subjects, n

1057593507Questionnaires analyzed (correctly filled out), n

668 (63.2)593 (84.5)459 (90.5)Female, n (%)

755 (71.4)506 (85.3)345 (68.0)Own mobile phone, n (%)

78 (7.4)123 (20.7)40 (7.9)Own smartphone or internet-enabled phone, n (%)

Means of transportation to hospital, n (%)

29 (2.7)161 (27.2)233 (46.0)Motorcycle

120 (11.4)291 (49.1)93 (18.3)Public transportation

889 (84.1)66 (11.1)147 (29.0)Walk

888 (84.0)551 (92.9)443 (87.4)Time to travel to hospital: less than 2 hours, n (%)

467 (44.2)178 (30.0)125 (24.7)Employed (yes), n (%)

Annual income, RWFb (USD)

60,000 (69)500,000 (575)333,000 (383)1st quartile

255,000 (296)900,000 (1035)400,000 (460)Median

716,250 (823)1,200,000 (1379)765,000 (879)3rd quartile

Literacy level

58 (5.5)35 (5.9)23 (4.5)Tertiary (A1/A0/Bachelor), n (%)

249 (23.6)256 (43.2)186 (36.7)Secondary (S1-S6), n (%)

311 (29.4)264 (44.5)265 (52.3)Primary (P1-P8), n (%)

439 (41.5)38 (6.4)33 (6.5)Informal (none), n (%)

aDH: District Hospital.
bRWF: Rwandan franc.
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From analysis of a survey (Table 2), across the 2 urban sites,
the patients at Kibagabaga DH are higher in median income

(χ2
1=39.2, P<.001, by the Mood median test), literacy (χ2

3=7.86,

P=.49), and ownership of mobile phones (χ2
1=45.4, P<.001)

and smartphones (χ2
1=32.0, P<.001). At the rural site, the

patients at Kabaya DH consisted of more males than at the urban
sites (there was a campaign for male circumcision at the time
of the trial). In general, the rural patients were less likely to own

mobile phones (χ2
1=11.2, P=.001) and smartphones (χ2

1=31.7,
P<.001), walk to the hospital, and while they were more likely

to be employed (χ2
1=62.1, P<.001), they had lower median

income (χ2
1=35.0, P<.001, by the Mood median test) and

literacy (χ2
3=376.9, P<.001) than those at the 2 urban sites

(chi-squared tests comparing the rural site to both of the urban
sites combined). For example, 41.53% (439/1057) of patients
at Kabaya DH had no formal literacy.

Across all 3 sites, the percentage of patients who own mobile
phones was high (at least 68% at each site), but only a smaller
percentage (at most 20%) owned mobile phones that could surf
the internet.

Real-Time Geographical Dashboard to Street
Resolution
The mobile app registered each HIV test result. As shown in
the map of Rwanda (Figure 2), the results were viewable on the
dashboard immediately.

As shown in the map, 1087 results were recorded in Kigali and
1122 results in Northwest Rwanda. When zooming into Kigali,
one can focus on the 2 sites of Masaka and Kibagabaga
separately. First, with Masaka (Figure 3), one can see the HIV
test results, including multiple subsites (as performed by
different health care workers) at the site, down to street-level
resolution. Clicking on 1 of the numbers revealed each of the
HIV test results. Similar geographical resolution was achieved
with Kibagabaga (Figure 3), showing several test locations as
performed by health care workers. In addition, zooming in on
the map of Northwest Rwanda showed test results at Kabaya
DH to street-level resolution as performed by the 12 health care
workers (Figure 3).

Survey of Health Care Workers
At the end of the trial, we performed surveys of the patients and
health care workers. A summary of the results of the survey of
health care workers is shown in Table 3.

Figure 2. Real-time dashboard of HIV tests tracked in Rwanda. On the map to the left, tests done in Kigali and northwest Rwanda are shown. The right
shows the log of the tests as they are recorded.
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Figure 3. Real-time dashboard of the 3 sites to street resolution. (A) Masaka District Hospital: HIV test results at Masaka District Hospital (left);
zoomed region of the red box in left image (middle); clicking on the number 40 showed each of the test results (right). (B) Kibagabaga District Hospital:
HIV test results at the site (left) and zoomed image on the red box on the left, showing fine distinction of test locations to street resolution (right). (C)
Kabaya District Hospital: HIV test results at the site(left) and xoomed image on the red box on the left, showing fine distinction of test locations to
street resolution (right). Colors of each cluster indicate the number of samples (green=1 to 10; yellow=11 to 99; red=100 or above).
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Table 3. Results of survey of health care workers.

Responses answering yes, n (%)Topics

Rapid HIV testing

20 (100)Were you trained in HIV rapid testing?

2 (10)Do you find it difficult to interpret the results of rapid tests?

Experience with lateral flow reader

8 (40)Have you used the Junco LFRa?

103How many patients with the Junco LFR?

15 (75)Do you feel the LFR made HIV testing easier?

17 (85)Do you feel the LFR made HIV testing faster?

3 (15)Do you feel the LFR made HIV testing more difficult?

3 (15)Do you feel the LFR made HIV testing slower?

16 (80)Would you like to use the LFR again during HIV testing?

14 (70)Would you recommend the LFR to others?

Mobile app

19 (95)Did you find the mobile app easy to use?

19 (95)Would you prefer to use the mobile app over paper records?

20 (100)Would you use the mobile app again during HIV testing?

20 (100)Would you recommend the app to others?

Mobile phone

20 (100)Do you own a mobile phone?

19 (95)Do you own a smartphone?

aLFR: lateral flow reader.

The 20 health care workers were highly satisfied with the
technology. They were most favorable toward the mobile app,
finding it easy to use and preferable over paper records. No
internet was needed at the time of performing the test
(connectivity was required to upload the results, either
immediately or later). All of respondents would use the mobile
app again during HIV testing and recommend the app to others.
While they were provided mobile phones for the trial, 100% of
the health care workers owned phones, with 95% (19/20) owning
smartphones and using the phones for internet surfing.

The health care workers were slightly less enthusiastic about
the LFR. Overall, 80% (16/20) would like to use the LFR again
during HIV testing, and 70% (14/20) would recommend it to
others. The health care workers at Kabaya were more
enthusiastic about the LFR: 83% (10/12) would like to use the

LFR again during HIV testing, and 83% (10/12) would
recommend it to others.

Survey of Patients
We also conducted and tabulated the results of a survey of the
patients across the 3 sites. Results were recorded by pen and
paper and later transcribed into a computer. A summary of the
results is shown in Table 4.

Across the 3 sites, 42.7% (253/593) to 71.0% (360/507) of
patients received their test results within 30 minutes, with a
sizeable percentage (lowest of 26.6% [135/507] at Masaka DH
to highest of 48.2% [286/593] at Kibabaga DH) waiting past
30 minutes. At the 2 urban sites, 68.0% (345/507) to 85.3%
(506/593) of patients owned cell phones (with most using them
for calling, texting, and listening to music). At the rural site,
71.43% (755/1057) of patients owned cell phones (with most
using them for calling and texting).
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Table 4. Results of survey of patients.

Kabaya DHKibagabaga DHMasaka DHaVariable/question

1081596513Subjects, n

1057593507Questionnaires analyzed (correctly filled out), n

   Study subject sex, n (%)

668 (63.2)501 (84.5)459 (91.5)Female

389 (36.8)02 (15.5)48 (9.5)Male

1054 (99.7)593 (100)507 (100)Have you had a laboratory examination on your blood today? (yes), n (%)

   For which laboratory examinations was your blood drawn today? n (%)

1042 (98.6)592 (99.8)507 (100)HIV

   How long did it take you to get the laboratory results? n (%)

681 (64.4)253 (42.7)360 (71.0)Less than 30 minutes

225 (21.3)193 (32.5)70 (13.8)30 minutes to 1 hour

101 (9.6)63 (10.6)58 (11.4)1 to 2 hours

37 (3.5)30 (5.1)7 (1.4)Over 2 hours

13 (1.2)54 (9.1)12 (2.4)Not stated

755 (71.4)506 (85.3)345 (68.0)Do you own a mobile phone? n (%)

   If yes, what type? n (%)

662 (62.6)408 (68.8)293 (57.8)Basic phone (text, calling, no internet)

69 (6.5)97 (16.4)40 (7.9)Smartphone (can download apps) or internet-enabled phone (check email, browse
internet)

24 (2.3)1 (0.2)12 (2.4)Model not specified

aDH: District Hospital.

Discussion

Principal Findings
We have demonstrated a technology that successfully recorded
HIV test results. We paired a portable reader for interpreting
the results of HIV lateral flow tests with a mobile phone app to
track over 2000 HIV test results in urban and rural locations in
Rwanda and could immediately view the HIV test results with
geospatial context and in real time. While most health care
workers felt the LFR was effective and would use it again for
HIV tests, some workers felt it slowed the process. Also, the
LFR experienced some operational issues that were resolved
within a week. All were satisfied with the mobile app.

The use of mobile phones for HIV diagnostics has so far been
limited, with most of the work focused on the outdated SMS
messaging technique. There may be a perception that apps
require constant internet connectivity and expensive
smartphones and are not amenable to aiding HIV diagnostics
in developing countries. Our technology does not require
constant internet connectivity and makes use of the full power
of apps on low-cost (less than $70 USD) smartphones, which
over 90% of the health care workers personally own (depending
on the demographics). The technique was judged to have high
user acceptability, with 100% of the health care workers
recommending the app.

While this study was not designed to accurately measure
prevalence, we note that the Kigali sites reported 4.3%
prevalence, compared to 5.6% in urban population (and 6.1%
in Kigali) as previously reported [9]. (The lower apparent
prevalence in Kibagabaga DH, being located in Gasabo district,
may reflect more patients visiting from rural areas than Masaka
DH, located in Kicukiro district.) In our study, the rural site of
Kabaya DH reported 2.1% compared to 2.6% as previously
reported for rural population [9].

Limitations
The technology was effective. Overall, 92% of the HIV test
results had autogenerated GPS coordinates (with a much higher
percentage in the last 3 weeks after the phones were set
correctly). The results suggest that this technology can
effectively scale (especially if use of an LFR is not required) to
the whole country compared to expensive and labor-intensive
community cohort–based questionnaires by leveraging the power
of mobile phones. However, pointing to the limitations of this
study, several important steps still need to be addressed before
significant public health impact can be achieved: patient records
will need to be integrated with existing electronic health record
systems before such a technology can replace (rather than
complement) current patient records, and replacement of the
functions of the LFR with the app could streamline workflow
and increase usability. Also, the reliance on manual entry of the
data could still introduce errors, although currently the LFR
keeps a backup log of the results (so the results can be
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cross-checked using the time stamp), and in the future, a picture
of the rapid test will be taken and kept on record for
cross-validation of results. Finally, to increase the success rate
of using the technology, including among users of different
levels of education and technical proficiencies, we could ask
for a successful skills demonstration after the training and before
starting the trial.

Conclusions
Toward the Joint United Nations Programme on HIV/AIDS
90-90-90 targets for HIV patients and diagnostics, we tested a
mobile phone–based technology for tracking HIV incidences
in Western Rwanda and at rural locations, where unexpected
incidences emerged [9]. In rural settings, the LFR was perceived
to work faster compared to the existing workflow (100% in
rural sites to 63% urban sites) and was recommended more
highly (83% rural sites to 50% urban sites). The app was

uniformly praised for its speed of use and effectiveness,
garnering 100% recommendation.

For the way forward, we are buoyed by the effectiveness of our
technique and the uniform enthusiasm especially for the app
(100% enthusiasm from all 20 health care workers). We plan
to expand a version of the app that would obviate the need for
an LFR, which could improve the scalability of the method to
improve public health surveillance of HIV and other infectious
diseases. The results from the study aim to lay the foundation
for a scalable method to improve the efficiency and quality of
identifying HIV incidences quickly in developing countries. In
the future, this technology could also be applied to HIV home
testing, with 10% of our surveyed patients already owning
compatible mobile phones. We will work to scale this
technology in Rwanda and beyond, which, at low marginal cost,
leverages the power of mobile phones to track HIV incidences
in real time and with proper spatial context.
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Abbreviations
ART: antiretroviral therapy
DH: District Hospital
GPS: Global Positioning System
LFR: lateral flow reader
SMS: short message service
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Abstract

Background: In the era of eHealth, eHealth literacy is emerging as a key concept to promote self-management of chronic
conditions such as HIV. However, there is a paucity of research focused on eHealth literacy for people living with HIV (PLWH)
as a means of improving their adherence to HIV care and health outcome.

Objective: The objective of this study was to critically appraise the types, scope, and nature of studies addressing eHealth
literacy as a study variable in PLWH.

Methods: This systematic review used comprehensive database searches, such as PubMed, EMBASE, CINAHL, Web of
Science, and Cochrane, to identify quantitative studies targeting PLWH published in English before May 2017 with eHealth
literacy as a study variable.

Results: We identified 56 unique records, and 7 papers met the eligibility criteria. The types of study designs varied (descriptive,
n=3; quasi-experimental, n=3; and experimental, n=1) and often involved community-based settings (n=5), with sample sizes
ranging from 18 to 895. In regards to instruments used, 3 studies measured eHealth literacy with validated instruments such as
the eHealth Literacy Scale (eHEALS); 2 studies used full or short versions of Test of Functional Health Literacy in Adults,
whereas the remaining 2 studies used study-developed questions. The majority of studies included in the review reported high
eHealth literacy among the samples. The associations between eHealth literacy and health outcomes in PLWH were not consistent.
In the areas of HIV transmission risk, retention in care, treatment adherence, and virological suppression, the role of eHealth
literacy is still not fully understood. Furthermore, the implications for future research are discussed.

Conclusions: Understanding the role of eHealth literacy is an essential step to encourage PLWH to be actively engaged in their
health care. Avenues to pursue in the role of eHealth literacy and PLWH should consider the development and use of standardized
eHealth literacy definitions and measures.

(JMIR Public Health Surveill 2018;4(3):e64)   doi:10.2196/publichealth.9687

KEYWORDS

eHealth literacy; HIV; systematic review; mobile phones

Introduction

HIV is a major global health issue with an estimated 36.7 million
people living with HIV (PLWH) worldwide [1]. In the United

States, 1.1 million individuals are estimated to have HIV [2].
With the advent of antiretroviral therapy (ART), HIV has
become a chronic condition requiring self-management,
including the adherence to ART and keeping regular HIV care
appointments [3]. However, PLWH often do not adhere to their
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treatment regimen; only 30% are ART adherent to the point of
achieving viral suppression [4].

eHealth, “a medical and public health practice supported by a
Web-based platform,” is a popular innovation in
self-management of chronic conditions and includes mobile
phones, tablet computers, and personal computers [5].
Web-based electronic communication technology is a relatively
new source of health information that requires a new set of
health literacy skills. Internet access is now nearly unlimited
with 89% of US adults using the internet to access health
information and gain social support [6]. This eHealth not only
increases the access to health information but also expands
social support and coping strategies by linking people together
largely through a network of commercial, educational, and
governmental websites as well as social media [7]. The utility
of eHealth as an effective health communication and educational
tool for self-management of chronic conditions has already been
demonstrated [8]. In addition, evidence indicates that eHealth
interventions offer great promise to promote care across the
HIV treatment cascade, including prevention [9], medication
adherence [10,11], and quality of life [12].

eHealth literacy refers to one’s ability “to seek, find, understand,
and appraise health information from electronic sources and
apply the knowledge gained to address or solve a health
problem” [13]. In this era of eHealth, PLWH represent an
important population in which to intervene on eHealth literacy
as electronic health sources is a more feasible and cost-effective
means to improve the adherence to HIV care continuum,
treatment outcomes, and promote health for PLWH [14]. Hence,
this study aims to critically appraise the types, scope, and nature
of studies designed to address eHealth literacy as a study
variable in PLWH.

To the best of our knowledge, this is the first systematic review
to address eHealth literacy in PLWH. Although previous
systematic reviews have addressed eHealth literacy in college
students [15], underserved populations [16], or older adults [17],
eHealth literacy tools [18], Web-based health literacy
interventions [19], computer-based interventions and
applications [20], and eHealth policy issues [21], none were
focused on PLWH. We aim to explain the definitions of eHealth
literacy used in each study, describe theoretical and
measurement approaches pertaining to eHealth literacy, and
evaluate the study findings on eHealth literacy in association
with target behavior or health outcomes in PLWH to identify
gaps and areas for potential future research.

Methods

Review Design
We conducted a systematic review of quantitative evidence
designed to assess eHealth literacy as a study variable in PLWH.
Owing to the heterogeneity relative to study designs and
statistical analysis approaches among the included studies, we
synthesized the study findings rather than conducting a
meta-analysis.

Study Eligibility
Studies were screened to assess their relevance for our review.
Specifically, the following inclusion criteria were used papers
that used a quantitative study design (including descriptive,
correlational, quasi-experimental, or experimental); papers
including eHealth literacy as a study variable; and papers
including participants with HIV or AIDS. Our initial search was
not limited by the age of study participants or sex to maximize
the breadth of the study findings. In addition, we included any
study that reported quantitative findings relevant to the review
question. Studies from around the globe were included, as were
studies conducted in various settings, including community or
health system settings.

Notably, only studies written in English were included. Studies
were excluded if full-texts were unavailable (ie, conference
abstracts), they were not quantitative designs, or they reported
protocol only with no measured outcomes.

Search and Identification Process
In consultation with a medical librarian, peer-reviewed journal
papers were searched systematically in PubMed, EMBASE,
CINAHL, Scopus, Web of Science, and Cochrane databases
using variations of MeSH terms—methodological interest (ie,
measurement of eHealth literacy as a study variable), population
of interest (ie, PLWH), and study design of interest (ie,
quantitative) to identify relevant papers published in English
before April 27, 2017. In addition, a manual search of reference
lists in selected papers was completed. Multimedia Appendix
1 provides a full search strategy for the database searches. Papers
and abstracts were excluded if they did not address the
population, design, or variable of interest.

Data Extraction and Quality Assessment
At the conclusion of the study selection process, 1 reviewing
author extracted data from the studies using a standard template.
The initial data extraction captured both the study characteristics
(eg, setting, participants, type of study design, and eHealth
literacy measure) and key findings from each study. In addition,
other team members reviewed the studies and extracted data
relating to key findings. Extracted findings were compared and
discussed until all discrepancies were resolved.

We assessed the rigor of the underlying evidence base for the
review by developing an overview of key methodological
characteristics, including the study design, sample size and
strategy, study setting, and year of publication. No studies were
excluded on the basis of the quality assessment. Rather, the
quality assessment process was conducted independently by 2
raters using the Joanna Briggs Institute quality appraisal tools
based specifically on study designs, randomized controlled trials
(RCTs) [22], quasi-experimental [22], and cross-sectional [23]
studies to identify strengths and weaknesses in study
methodologies and guide the interpretation and assessment of
study findings.
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Results

Selection of Studies
Figure 1 presents a detailed outline of the paper selection
process. Our initial database search in April 2017 resulted in
116 citations. After removing duplicates, 56 titles with abstracts
were reviewed independently for relevance by 2 authors (among
HH, LES, and SG). The third author resolved conflicts in the
inclusion of papers. Overall, 26 papers passed on to the next
full-text review process. Of 26 full-text papers that were
reviewed independently by 2 authors, 7 were deemed eligible.
Reasons for exclusion included study design not quantitative
(n=6), patient population not PLWH (n=5), duplicated paper
(n=2), eHealth literacy not measured (n=2), full paper not found
(n=2), and wrong format of paper (ie, not a journal paper; n=2).

Quality Assessment: Characterizing the Evidence Base
Overall, the studies appraised in this review achieved, at least,
the assessment criteria, but the quality varied across individual

studies. Although 1 RCT scored 8 of 13 [24] and 1 of 3
quasi-experimental studies scored 6 of 9 [25], they exhibited
strengthened validity of causal inferences by comparing the
control and intervention groups. In addition, 2
quasi-experimental studies scored 6 of 9 [26,27] and lacked a
comparison group to determine pre-post intervention effects.
One cross-sectional study earned a perfect score of 8 of 8 [28];
the remaining 2 earned 4 and 6, respectively [29,30]; potential
confounding factors were not identified in these 2 studies. In
addition, 2 of 7 studies did not use a validated standard measure
of eHealth literacy but collected participants’ basic literacy
skills [24,29].

Furthermore, an interrater agreement rate was calculated [31].
The resulting statistic indicated substantial agreement (average
interrater agreement rate, 69%) [32]. For items where
discrepancies occurred between raters, we resolved them by
interrater discussion. Table 1 shows consensual scores of the
quality assessment.

Figure 1. Literature review flowchart.
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Table 1. Quality assessment.

Krishnan
et al [30]
(n=6)

Kim et al
[29]
(n=4)

Blackstock
et al [28]
(n=8)

Woods et
al [25]
(n=6)

Robinson
et al [27]
(n=6)

Ownby et
al [26]
(n=6)

Siedner et
al [24]
(n=8)

Study items

Randomized controlled trial

✔1. Was true randomization used for assignment of partic-
ipants to treatment groups?

2. Was allocation to treatment groups concealed?

3. Were treatment groups similar at the baseline?

4. Were participants blind to treatment assignment?

5. Were those delivering treatment blind to treatment as-
signment?

6. Were outcomes assessors blind to treatment assign-
ment?

✔7. Were treatment groups treated identically other than
the intervention of interest?

✔8. Was follow-up complete and, if not, were differences
between groups in terms of their follow-up adequately
described and analyzed?

✔9. Were participants analyzed in the groups to which they
were randomized?

✔10. Were outcomes measured in the same way for treat-
ment groups?

✔11. Were outcomes measured in a reliable way?

✔12. Was appropriate statistical analysis used?

✔13. Was the trial design appropriate, and any deviations
from the standard randomized controlled trial design (in-
dividual randomization, parallel groups) accounted for in
the conduct and analysis of the trial?

Quasi-experimental studies

✔✔✔1. Is it clear in the study what is the “cause” and what is
the “effect” (ie, there is no confusion about which variable
comes first)?

✔2. Were the participants included in any comparisons
similar?

3. Were the participants included in any comparisons re-
ceiving similar treatment or care, other than the exposure
or intervention of interest?

✔4. Was there a control group?

✔✔5. Were there multiple measurements of the outcome both
pre and post the intervention or exposure?

✔✔6. Was follow-up complete and, if not, were differences
between groups in terms of their follow-up adequately
described and analyzed?

✔✔✔7. Were the outcomes of participants included in any
comparisons measured in the same way?

✔✔✔8. Were outcomes measured in a reliable way?

✔✔✔9. Was appropriate statistical analysis used?

Cross-sectional studies

✔✔✔1. Were the criteria for inclusion in the sample clearly
defined?

✔✔✔2. Were the study subjects and the setting described in
detail?
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Krishnan
et al [30]
(n=6)

Kim et al
[29]
(n=4)

Blackstock
et al [28]
(n=8)

Woods et
al [25]
(n=6)

Robinson
et al [27]
(n=6)

Ownby et
al [26]
(n=6)

Siedner et
al [24]
(n=8)

Study items

✔✔3. Was the exposure measured in a valid and reliable way?

✔✔4. Were objective, standard criteria used for measurement
of the condition?

✔✔5. Were confounding factors identified?

✔6. Were strategies to deal with confounding factors stated?

✔✔7. Were the outcomes measured in a valid and reliable
way?

✔✔✔8. Was appropriate statistical analysis used?

Overview of Studies Included in the Review
Tables 2 and 3 summarize the main characteristics of studies
included in this review. All 7 included studies were published
from 2010 to 2016. Of these, 4 studies were conducted in the
United States [25-28], 2 in Uganda [24,29], and 1 in Peru [30].
Various study designs used were cross-sectional [28-30],
quasi-experimental [25-27], and RCT [24]. Of note, 2 studies
identified a theoretical or conceptual framework used in their
research [24,26].

Study participants were recruited from a variety of settings as
follows: community-based HIV/AIDS organizations [26,28-30],
HIV hospital settings [24,27], and both community-based and
hospital settings [25]. Overall, HIV-infected adults aged >18
years were included; 1 study included only people who had

advanced immunosuppression (CD4+ [cluster of differentiation

4] T-cell count <350 cells/mm3 and taking ARTs for, at least,
4 years) [29], 1 included women only [28], and 1 involved men
who have sex with men and transgender women [30]. The
sample sizes ranged from 18 to 895.

Among studies that included women, most had a majority of
female participants (56%-100%) but 2 [25,26] included only
9% and 29% of females in their study samples, respectively.
Studies in the United States tended to include a large proportion
of African American or black (57%-63%) participants [25-28]
in which more than half (54.3%) of the study sample was
Caucasian. All but 1 study [30] reported low educational levels
with 37%-65% of participants having less than high school
education. The baseline access to mobile phones, computers,
and the internet was fairly high among participants in the United
States, Uganda, and Peru. In the United States, 87.3%-88.9%
used a smartphone, [25,28], 58.7%-88.9% used a home computer
or tablet [25,28], 72.2% had regular access to the internet [27],
and 66.7% used the internet daily [25]. Similarly, in Uganda,
81.8%-82.8% of study participants owned a mobile phone
[24,29]. Krishnan et al reported that 59.6% of participants in
Peru had access to a standard cell phone, 30.1% had access to
a smartphone, 37.3% used landlines, and 35.4% accessed a
laptop or desktop computer [30].

Definition and Assessment of eHealth Literacy
In this review, 5 of 7 studies defined eHealth literacy. Most
studies [25-28] defined eHealth literacy as the capacity to find,
process, understand, and apply health information to make
appropriate health decisions. Blackstock et al [28] specified that
this information must come from an electronic source. Kim et
al [29] simply defined health literacy as the ability to read and
write.

In addition, 3 studies conducted in the United States [25,27,28]
measured eHealth literacy using the eHealth Literacy Scale
(eHEALS), a self-evaluation tool comprising 8 items with a
5-point Likert scale. eHEALS measures the participants’ level
of knowledge, comfort, and skills in utilizing the internet or
electronic health information to solve health problems [33]. In
addition to assessing the ability to utilize internet-based health
information using eHEALS, Woods et al [25] determined
participants’ general literacy, numeracy levels, and
HIV-associated knowledge using a battery, including the Test
of Online Pharmacy Skills (TOPS), Test of Online Health
Records Navigation (TOHRN), Rapid Estimate of Adult
Literacy in Medicine), HIV Knowledge 18, Expanded Numeracy
Scale, Short Assessment of Health Literacy, Test of Functional
Health Literacy in Adults (TOFHLA) reading comprehension,
and Newest Vital Sign.

Moreover, Ownby et al [26] used the full-length version of
TOFHLA [34] to measure basic reading and numeracy abilities
to understand the verbal and written information commonly
used in actual health care settings. Krishnan et al [30] used a
short version of TOFHLA [35] in Spanish for screening patient
literacy levels in health care settings in Peru. In Uganda, Siedner
et al [24] and Kim et al [29] evaluated the feasibility and effect
of a mobile phone-based short message service (SMS) text
message intervention on the adherence to HIV treatment.
eHealth literacy was assessed by study-tailored questions by
asking participants to read a full sentence in their local language
at enrollment; for example, “Are you able to read and/or write?”
along with mobile phone availability [24,29].
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Table 2. Overview of included studies.

Definition of eHealth literacySample characteristicsStudy frameworkStudy purposeStudy design, sample
size, and setting

Study

“The ability to find, under-
stand, & evaluate health infor-

100% female; median age, 49

(IQRa 44-54) years; 54.0%

No study frame-
work reported

To examine the relation-
ship between eHealth
literacy and HIV trans-

Cross-sectional, N=63,
February-April, 2014;
6 community-based or-

Blackstock
et al, 2016
[28] mation from electronic

sources and apply this infor-
(34/63) non-Hispanic black;
36.5% (23/63) Hispanic; 38.1%mission risk behaviors

in internet-using wom-
en with HIV

ganizations providing
social and clinical ser-
vices to people living
with HIV

mation to a specific health
problem” (Norman and Skin-
ner, 2006 [13])

(24/63) <high school education;
85.7% (54/63) prescribed

ARTb; 87.3% (55/63) owned a
cell phone; 58.7% (37/63) had
a computer or tablet

Ability to read and write76.4% (684/895) female; medi-
an age, 44 (IQR 44-50) years;

No study frame-
work reported

To determine the pro-
portion of people living
with HIV who are liter-

Cross-sectional, June
2012-August 2013,
N=895, AIDS Support
Organization

Kim et al,
2015 [29]

65% (581/895) <high school
education; median time on HIV
medications, 6.8 (IQR 5.8-7.7)

ate and also use mobile
phones in rural Uganda

years; 82.8% (741/895) owned
a mobile phone; 73.0%
(653/895) can read and write

Definition of eHealth literacy
not reported

77.7% (279/359) male; 13.3%
(48/359) TGW; mean age, 34
(SD 8.11) years; 2.2% (8/359)

No study frame-
work reported

To examine the use of
communication technol-
ogy and acceptance of

Cross-sectional, N=359,
no specified date, 3
sites at 2 nongovern-

Krishnan et
al, 2015 [30]

<high school education; 53.3%mHealth among HIV-mental organizations
providing health care (131/246) completed college;

87.2% (313/359) currently on
infected Peruvian men
who have sex with men

ART; 59.6% (214/359) had ac-and TGWc to gauge the
cess to a standard cell phone;feasibility of an
30.1% (108/359) had access tomHealth-enabled HIV-

risk reduction program a smartphone; 37.3% (134/359)
used landlines; 35.4%
(127/359) accessed a laptop or
computer

“The degree to which individ-
uals have the capacity to ob-

29% female (36/124); mean
age, 47.1 (SD 8.69) years; 63%

Information-Moti-
vation-Behav-
ioral Skills model

To evaluate whether an
Information-Motiva-
tion-Behavioral Skills
Model–based electronic

Quasi-experimental,
N=124, May 2010-De-
cember 2011, Urban
and suburban HIV clin-
ics

Ownby et al,
2012 [26]

tain, process, & understand
basic health information &
services needed to make ap-
propriate health decisions”

(78/124) black; 37% (46/124)
<high school education; mean,
11.6 (SD 7.18) years on ART;
mean Test of Functional Health

intervention can im-
prove health literacy

(Nielsen-Bohlman et al, 2004
[36])

Literacy in Adults score, 88.48
(SD 14.16)

and medication adher-
ence

The “capacity to acquire, un-
derstand & use information in

55.6% (10/18) female; mean
age, 46 (range 34-69) years;

No study frame-
work reported

To determine if comput-
er skills and internet
health educational inter-

Quasi-experimental,
N=18, July, 2008, HIV-
positive care center in
a hospital setting

Robinson et
al, 2010 [27]

ways which promote & main-
tain good health”

61.1% (11/18) African Ameri-
can; 27.8% (5/18) Caucasian;
44.4% (8/18) high school edu-

vention will improve
the perceived knowl-

cation or less; 72% (13/18)edge of internet health
have regular internet access;resources and confi-
23% (3/13) sought health infor-dence using the internet

for health questions mation in the internet in the
past 3 months

Definition of eHealth literacy
not reported

65.2% (251/385) female; medi-
an age 32 (IQR 26-39) years;
62.4% (240/385) primary edu-

Concepts derived
from the Technol-
ogy Acceptance

To identify predictors
of uptake of a mHealth
app and evaluate the ef-

Experimental, N=385,
HIV clinic of the
Mbarara Regional Refer-
ral Hospital

Siedner et al,
2015 [24]

cation or less; 67.5% (260/385)
could read a complete sentence;

Model and the
Unified Theory

ficacy of various short
message service text

81.8% (315/385) had a mobile
phone

of Technology
Acceptance and
Use of Technolo-
gy

message formats to opti-
mize the confidentiality
and accessibility
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Definition of eHealth literacySample characteristicsStudy frameworkStudy purposeStudy design, sample
size, and setting

Study

“The capacity to obtain, com-
municate, process, & under-
stand basic health information
& services to make appropri-
ate health decisions” (Patient
Protection & Affordable Care
Act, 2010 [37])

9.0% (6/67) female; 68.7%
(46/67) HIV+ and 31.3%
(21/67) HIV- mean age 45.5
(SD 9.2) years; 53.7% (36/67)
Caucasian; 19.4% (13/67) His-
panic; mean education level
13.2 (SD 2.5) years; 95.7%
(44/46) prescribed ART; 86.6%
(58/67) use a home computer;
76.1% (51/67) own a smart-
phone; 67.2% (45/67) use the
internet daily

No study frame-
work reported

To evaluate the effects
of HIV-associated neu-
rocognitive disorders on
2 internet-based tests of
health care management

Cross-sectional, N=67,
neuroAIDS research
center, which recruits
from local HIV clinics
and community-based
organizations

Woods et al,
2016 [25]

aIQR: interquartile range.
bART: antiretroviral therapy.
cTGW: transgender women.

Characteristics of eHealth Literacy Among People
Living With HIV
Overall, varying scales with differing scoring systems were
used to determine the level of eHealth literacy. High eHealth
literacy scores among PLWH ranged from 52.4% to 87% in
study samples with the majority of studies finding high eHealth
literacy among 65%-80% of participants. Such a wide variance
arose because high literacy was defined differently in each study,
ranging from the ability to read a complete sentence [24] to a
TOFHLA score >75 [26], and an eHEALS score greater than
the median [28]. Kim et al [29] simply asked about the ability
to read and write and reported on differences in participant
demographic characteristics by literacy; they found that men
are more likely to be literate and use a cell phone than women,
AOR 2.81 (95% CI 1.83-4.30), and employed participants are
more likely to be literate and use a cell phone than those with
no income, AOR 2.35 (95% CI 1.23-4.49).

The acceptability of eHealth interventions was measured in 3
studies [27,29,30]. Nearly all (91.7%) patients with high eHealth
literacy supported their providers’ use of SMS text messaging
communication for reminders or to check health status in
contrast to only 38.8% of PLWH who were not literate or did
not own a cell phone (P<.001) [29]. Daily electronic medication
adherence reminders were preferred over weekly or monthly
[30]. Furthermore, perceptions of the ability to use the internet
and eHealth literacy levels increased significantly after
administration of a brief computer and eHealth class (P<.05
and P<.01, respectively) [27].

eHealth Literacy and Health Outcomes in People
Living With HIV
In this review, 6 of 7 studies examined the associations between
eHealth literacy and a variety of health outcomes in PLWH.

The 2 studies that measured the relationship between eHealth
literacy and HIV-related behavior reported conflicting results.
In Blackstock et al [28], higher eHealth literacy was found to
be associated with more significant HIV transmission risk
behaviors among women living with HIV, including vaginal or
anal intercourse without a condom and illicit drug use in the
past 30 days, adjusted for income and perceived health status,
AOR 3.90 (95% CI 1.05-14.56). The authors suggested the
complexities of eHealth literacy across unique social contexts
as a possible explanation for the unexpected finding.

In contrast, following an electronically delivered health literacy
intervention targeting HIV-related health literacy on medication
adherence, participants in Ownby et al [26] self-reported
increased knowledge about barriers to adherence and medication
misconceptions (P=.02) as well as adherence behavioral skills,
including using reminders, scheduling medications with other
daily activities, and soliciting social support (P=.02). Data were
collected 3 months apart; however, no control group was
included in this study.

Siedner et al [24] examined participant retention in HIV care
by measuring attendance at return-to-clinic appointments in
accordance with instructions. Following an intervention that
involved providing test results through SMS text messages,
60.8% of participants returned to the clinic when provided
instructions through SMS text messages [24]. The ability to
read a complete sentence on enrollment was independently
associated with an accurate identification of the message sent,
AOR 4.54 (95% CI 1.42-14.47; P=.01), and return to the clinic
within 7 days of the first transmitted SMS text message, AOR
3.81 (95% CI 1.61-9.03; P=.002) [24]. In addition, the ability
to access an SMS text message on enrollment was independently
associated with returning to the clinic within 7 days of the SMS
text message notification, AOR 4.90 (95% CI 1.06-22.61; P=.04)
[24].
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Table 3. Overview of the included studies.

Main FindingsHIV-Related Health OutcomeMeasurement of eHealth Literacy
(Validity or Reliability)

Study

Higher eHealth literacy, AORb 3.90 (95% CI 1.05-14.56), sig-
nificantly associated with HIV transmission risk behaviors,
adjusted for income and self-perceived health status.

HIV transmission risk behaviors,
including condomless vaginal or
anal intercourse, and any illicit
drug use in the previous 30 days

eHEALSa Dichotomized at the
median (high vs low health litera-
cy; alpha=.88)

Blackstock
et al, 2016
[28]

Literate mobile phone users had lower adherence to ART (84.2%
vs 90.6%; P=.007) and more favorable perception of utilizing
reminders to support the adherence to treatment (57.1% vs
36.7%; P<.001) than those who were either illiterate, did not
have a mobile phone, or both. There was no difference between
literate mobile users and other study participants in the virolog-
ical suppression.

Viral suppression (CD4c count),

adherence to ARTd

Study questions: “Are you able to
read?” and “Are you able to
write?” (validity or reliability not
reported)

Kim et al,
2015 [29]

No significant differences were found in communication tech-
nology use and mHealth acceptance among participants with
alcohol use disorders, depression, and suboptimal ART adher-
ence.

ART adherenceShort Test of Functional Health
Literacy in Adults (validity or reli-
ability not reported)

Krishnan et
al, 2015 [30]

Changes in the adherence only approached the statistical signif-
icance. Knowledge and behavioral skills increased over the
course of the study.

Medication adherenceTOFHLAe<59, inadequate; 60-74,
marginal; >75, adequate (validity
or reliability not reported)

Ownby et al,
2012 [26]

A significant improvement from the baseline to immediately
following the intervention was observed in perceived eHealth
literacy levels (mean summary score 19 vs 32, P<.01) and per-
ceptions of ability to use the internet (P<.05).

HIV-related health outcome not
measured

eHEALS (validity or reliability not
reported)

Robinson et
al, 2010 [27]

The ability to read a complete sentence on enrollment was inde-
pendently associated with accurate identification of the message
sent, AOR 4.54 (95% CI 1.42-14.47), and return to the clinic
within 7 d of the first transmitted SMS text message, AOR 3.81
(95% CI 1.61-9.03). An ability to access an SMS text message
on enrollment was independently associated with returning to
the clinic within 7 days of an abnormal SMS text notification,
AOR 4.90 (95% CI 1.06-22.61).

Retention in care defined as a
return to the clinic within 7 days

of the first SMSf text message
for those with abnormal results
or on the date of the scheduled
appointment for those with nor-
mal results

Participants were asked to read a
complete sentence in the local
language (validity or reliability not
reported)

Siedner et al,
2015 [24]

Lower TOPS scores were associated with fewer years of educa-
tion (ρ=.49, P=.003), higher HIV viral load (correlation=−.47,
P=.006), less frequent computer and internet use (P<.05) and
not owning a smartphone (P<.05); lower TOHRN scores were
associated with lower education (ρ=.40, P=.01), higher HIV
viral load (ρ=–.032, P=.045), less frequent internet use (P<.05),
and anxiety related to computer use (P<.05).

CD4 count and HIV plasma viral
load

TOPSg; TOHRNh; eHEALS;
Rapid Estimate of Adult Literacy
in Medicine; HIV Knowledge 18;
Expanded Numeracy Scale;
TOFHLA; Short Assessment of
Health Literacy; Newest Vital Sign
(validity or reliability not reported)

Woods et al,
2016 [25]

aeHEALS: eHealth Literacy Scale.
bAOR: adjusted odds ratio.
cCD4: cluster of differentiation 4.
dART: antiretroviral therapy.
eTOFHLA: Test of Functional Health Literacy in Adults.
fSMS: short message service.
gTOPS: Test of Online Pharmacy Skills.
hTOHRN: Test of Online Health Records Navigation.

The relationship between eHealth literacy and HIV treatment
adherence was mixed. Literacy was inversely associated with
ART adherence, which was measured by Kim et al [29] as the
self-reported number of missed doses per month (86.4%
adherence among literate PLWH with a phone vs 90.6%
adherence among not literate PLWH or those with no phone;
AOR=1.76; 95% CI 1.12-2.77; P=.007). Krishnan et al [30]
found no significant differences between patients with optional
and suboptimal adherence in their access to communication
technology overall; however, a significant difference was
observed for mHealth acceptance among participants with and

without optimal ART adherence (P<.01); for example,
participants with poor adherence were less likely to be interested
in anonymous internet interaction with a health professional to
discuss HIV-related issues compared with participants with
optimal adherence (P<.001) [30]. Ownby et al [26] attempted
to improve the rates of adherence with an electronically
delivered health literacy intervention; after this intervention,
the adherence increased by 2.3% overall, resulting in the
statistical significance among participants who were <95%,
<90%, and <85% adherent (P=.01,.009,.04, respectively) but
not among those in adherence categories of ≤75% [26]. These
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conflicting results about the relationship between the adherence
and eHealth literacy might have been, in part, because of the
complexities of measuring the adherence primarily with
self-report as well as the nuanced differences between
participants exhibiting high- and low-level adherence.

Because only 2 studies assessed participants’ HIV viral load
under dissimilar study settings, we were unable to determine
the association between eHealth literacy and HIV viral
suppression [25,29]. Woods at al [25] reported, among a small
sample of 46 HIV-infected participants with and without
HIV-associated neurocognitive disorders, poorer performance
in Web-based health care navigation tasks was associated with
fewer years of education (ρ=.49, P=.003), higher plasma HIV
viral load (ρ=–.47, P=.006), less frequent computer and internet
use (P<.05), not owning a smartphone (P<.05), and higher
anxiety related to using a computer (P<.05). According to Kim
et al [29], in a large-scale study (n=895) with participants having
advanced immunosuppression, however, the proportion of
participants with an HIV viral load of >1000 copies/mL did not
differ between literate phone owners (9%) and phone users who
could not read and write (5.7%, P=.09).

Discussion

Although there has been limited reporting on eHealth literacy
targeting PLWH, available studies addressing eHealth literacy
in PLWH varied in their scope, methodology, and outcomes.
The studies included in the systematic review provide some
evidence for the role of eHealth literacy in relation to diverse
HIV-related health outcomes, including HIV transmission risk,
retention in care, treatment adherence, and virological
suppression. Even though eHealth literacy was generally high
and majority of those individuals included in the samples were
receptive to the use of SMS text messaging communication
[29], findings were mixed with instances of eHealth literacy
both promoting as well as hindering health outcomes.

In descriptive studies, eHealth literacy was either inversely
associated with HIV transmission prevention behaviors, ART
adherence, or viral load [25,28,29] or unrelated to the adherence
[30]. In contrast, eHealth literacy showed promise in promoting
increased HIV knowledge and HIV-related behavioral skills,
return visits when linked to care, and in bolstering the adherence
in studies using quasi-experimental or experimental designs
[24,26]. Each of these factors is critical in maintaining positive
outcomes related to knowledge and behaviors [26].

Negative outcomes in retention in care and treatment adherence
may be attributed to general literacy challenges and access to
phones, laptops, and desktop devices [24,30]. In addition, the
findings may be attributable to methodological biases associated
with the studies included in the review. Specifically, although
1 RCT [24] and 1 of 3 quasi-experimental studies [25] had
strengthened the validity of causal inferences by comparing
control and intervention groups, the baseline differences between
participants’ characteristics in both groups were unclearly
reported. In addition, 2 quasi-experimental studies [26,27]
lacked a comparison group to determine pre-post intervention
effects. Thus, the relationships among eHealth literacy and
linkage to care [24], Web-based health care navigation tasks

[25], medication adherence [26], and internet health literacy
and confidence [27] could not be attributed to the potential
causal effect. Moreover, 2 of 7 studies did not use a validated
standard measure of eHealth literacy but collected participants’
basic literacy skills [24,29]. Self-reported literacy may result
in not only the limited accuracy of data collected but also social
desirability bias [38].

This review has revealed several gaps in the existing evidence
base; gaps that collectively point to what we argue should be
key parts of the eHealth literacy research agenda going forward.
The most important gap and a critical focus of future research
is the use of validated instruments to measure eHealth literacy,
which do not appear in these studies. Much of the research we
reviewed used some form of eHealth literacy assessment but
with no evidence of validity and reliability or proxy measures
for eHealth literacy. Future eHealth literacy research should
adopt more rigorous instrumental approaches to addressing
eHealth literacy as a new way of promoting and facilitating
self-management in PLWH. In addition, there exists a limited
explanation of definitions of eHealth literacy used in the
literature. Hence, the selection of study instruments was
minimally justified within the reviewed studies, highlighting
the need for adopting a validated eHealth literacy framework
to better understand and promote healthy behaviors and
outcomes of PLWH. Finally, this review highlighted a critical
methodological gap and area for future improvement—the need
for ensuring a rigorous study design with adequate sample size,
use of validated eHealth literacy measures and theoretical
framework, and the use of diverse study samples of PLWH; for
example, because >90% of adolescents and young adults use
the internet daily [39], youth needs to receive more attention in
eHealth literacy research as they may have a different level of
eHealth literacy than older adults. Finally, because qualitative
studies or mixed-methods studies provide diversified, in-depth
perspectives, the combination of quantitative and qualitative
data would contribute to the development of a complete
understanding of the eHealth literacy among PLHW.

Although the strengths of this review’s design included its
inclusive search strategy that ensured extensive coverage,
standardized data extraction, and iterative analysis, there are
several limitations. First, despite our expanded search criteria,
only a small number of studies met the inclusion criteria because
of a lack of published studies. Second, the heterogeneity in the
quality and quantity of data reported in the studies included in
the review. Finally, we were unable to include studies in
languages other than English, thereby limiting the
generalizability of our findings.

In conclusion, the importance of eHealth literacy among PLWH
has only recently begun to be addressed. In the areas of HIV
transmission risk, retention in care, treatment adherence, and
virological suppression, the role of eHealth literacy remains
partially understood. Understanding the role of eHealth literacy
among PLWH is an essential next step in self-management of
HIV and AIDS. Avenues to pursue in the role of eHealth literacy
and PLWH should include the development and use of
standardized eHealth literacy measures. Additionally, examining
the role of eHealth literacy longitudinally from prevention to
viral suppression could yield knowledge regarding at what point,

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 |e64 | p.76http://publichealth.jmir.org/2018/3/e64/
(page number not for citation purposes)

Han et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


from diagnosis through management, are the best points to
intervene with eHealth literacy strategies. Finally, elucidating
the other factors that potentially contribute to eHealth literacy,

such as access and general literacy, could yield valuable findings
going forward.
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Abstract

Background: While services tailored for gay, bisexual, and other men who have sex with men (gbMSM) may provide support
for this vulnerable population, planning access to these services can be difficult due to the unknown spatial distribution of gbMSM
outside of gay-centered neighborhoods. This is particularly true since the emergence of geosocial networking apps, which have
become a widely used venue for meeting sexual partners.

Objective: The goal of our research was to estimate the spatial density of app users across Metro Vancouver and identify the
independent and adjusted neighborhood-level factors that predict app user density.

Methods: This pilot study used a popular geosocial networking app to estimate the spatial density of app users across rural and
urban Metro Vancouver. Multiple Poisson regression models were then constructed to model the relationship between app user
density and areal population-weighted neighbourhood-level factors from the 2016 Canadian Census and National Household
Survey.

Results: A total of 2021 app user profiles were counted within 1 mile of 263 sampling locations. In a multivariate model
controlling for time of day, app user density was associated with several dissemination area–level characteristics, including
population density (per 100; incidence rate ratio [IRR] 1.03, 95% CI 1.02-1.04), average household size (IRR 0.26, 95% CI
0.11-0.62), average age of males (IRR 0.93, 95% CI 0.88-0.98), median income of males (IRR 0.96, 95% CI 0.92-0.99), proportion
of males who were not married (IRR 1.08, 95% CI 1.02-1.13), proportion of males with a postsecondary education (IRR 1.06,
95% CI 1.03-1.10), proportion of males who are immigrants (IRR 1.04, 95% CI 1.004-1.07), and proportion of males living below
the low-income cutoff level (IRR 0.93, 95% CI 0.89-0.98).

Conclusions: This pilot study demonstrates how the combination of geosocial networking apps and administrative datasets
might help care providers, planners, and community leaders target online and offline interventions for gbMSM who use apps.

(JMIR Public Health Surveill 2018;4(3):e61)   doi:10.2196/publichealth.8931
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Introduction

In British Columbia, Canada, HIV and other sexually transmitted
infections continue to disproportionately impact gay, bisexual,
and other men who have sex with men (gbMSM) [1,2]. Yet,
because the spatial geography of gbMSM may not correlate
with that of the broader population, it remains difficult to ensure
that sexual health and other services are optimally tailored for
these individuals [3]. Previous research examining the social
geography of gbMSM has shown that their spatial distribution
is nonrandom [4] within the general population. For example,
research suggests that the marginalization of sexual minorities
along with other forces has given rise to gay
neighborhoods—areas that often have a higher than expected
concentration of gay men, gay-centered amenities, and
homonormative cultural artifacts [5]. However, changing
attitudes toward gbMSM in Western society have supposedly
reshaped these communities, leading to changes in where these
men live, work, and socialize [6]. Additionally, current literature
indicates that the introduction of geosocial networking apps,
which allow gbMSM to use smart devices to connect with other
gbMSM within their geographic proximity, has reduced the
need for traditional gay enclaves to facilitate connection [7,8].
These changes challenge the assumption that sexual health
services tailored for gbMSM are only needed (or appropriate)
within these historically gay neighborhoods [9]. Further
compounding the difficulty of targeting app users, their spatial
geography may not correlate with that of the wider gbMSM
population. For example, previous research has found that only
10% of rural gbMSM sought sex online, compared with 56%
in medium sized cities, 50% in suburban areas, and 48% in
urban centers [10]. However, dating and online hookup apps
largely appeared on the scene in 2009, after this research was
conducted; therefore, it is unclear whether these patterns hold
true today. These realities make it difficult to identify where
and how sexual health services can best meet the needs of app
users who are at elevated risk for HIV and other sexually
transmitted infections.

Methods in examining app user density have not been widely
explored. This study is the first of its kind in Canada and is only
preceded by the work of Delaney et al [3], who used similar
methods in estimating app user density in Atlanta, Georgia. In
their pilot, the authors used a geosocial networking app designed
for gbMSM to manually sample 2666 app users across 79
sampling locations. Sampling locations were selected by starting
at the home of 1 of the researchers and driving along road
networks to create 2-mile sampling intervals throughout the
city. In areas where app user density was greater than 50 users
per 2-mile radius, they recorded the maximum distance to the
50th closest user and traveled to the next sampling point outside
of that buffer. This sampling strategy resulted in 79 data
collection points across the city, many of which overlapped.
The data were then smoothed using ArcGIS’s kernel density
tool (Esri) [11] to create a density map of app users. While
Delaney’s objectives were primarily descriptive, our study seeks
to modify and leverage their sampling methods to estimate the
spatial density of app users across Metro Vancouver and identify
the independent and adjusted neighborhood-level factors that

predict app user density. The latter of these 2 objectives has not
yet been explored despite studies in other research contexts
suggesting that neighborhood-level factors are related to the
health and behavior of gbMSM [12,13].

Methods

Study Setting
This pilot study took place in Metro Vancouver, a regional
district of British Columbia, Canada (see Figure 1). Metro
Vancouver is a favorable location for examining the delivery
of sexual health services as it offers a highly supportive
environment for sexual minorities and for people living with
HIV [14-16]. Since the late 1990s, the province has provided
HIV medications and testing services free of charge, with much
of the HIV treatment services being administered centrally by
the British Columbia Centre for Excellence in HIV/AIDS [16].
Further, the province has led the way in several global
initiatives, including the Joint United Nations Programme on
HIV/AIDS 90-90-90 worldwide strategy for HIV prevention
[17]. Further, Metro Vancouver is an ideal location to consider
app use and the spatial variation in gender and sexual minority
populations, as it has an active lesbian, gay, bisexual, and
transgender (LGBT) community, evidenced by its hosting of
an annual gay pride parade, several community-based
organizations for lesbian, gay, bisexual, transgender, and queer
people, gay bathhouses and bars, and other attractive amenities.
Many of these attractions are in the downtown West End
(Vancouver’s historically gay neighborhood), however smaller
municipalities such as New Westminster are also home to gay
bathhouses and gay-owned businesses.

Data Collection

App User Density
Like Delaney et al [3], we used a popular geosocial networking
app designed for gbMSM and primarily used by people looking
for casual sexual partners, dates, or relationships [7]. While
several similar apps exist—targeting a wide range of gbMSM
subgroups—the app selected for our study was chosen because
it is among the most popular apps for gbMSM [18]. When
creating or editing their profile, users of this app can elect to
provide a picture and headline for their profile, which is
displayed in a grid alongside other users, organized by
increasing Euclidian distance [19]. Only active or recently active
(ie, within 1 hour) profiles are displayed. Tapping on each photo
reveals volunteered information, composing a user’s profile.
Further, and of greatest relevance to this study, users are also
asked whether they would like to grant access to their location
data, which in turn is displayed to other users as real-time
Euclidian distance [19]. We should note that the app used in
this pilot study is not necessarily representative of all apps used
by gbMSM, and we expect that future analyses will explore and
compare the results from available platforms. Nevertheless,
using this platform, we modified Delaney’s data collection
method by systematically sampling app users across a grid of
predetermined data collection points throughout Metro
Vancouver (see Figure 2). The first collection point was selected
randomly from a location in Metro Vancouver, and the grid was
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created by calculating the coordinates for points at 2-mile
intervals. Rather than physically traversing the city, as in
Delaney et al [3], this approach allowed us to estimate app user
density by putting the coordinates of each sampling location
into our phone and then counting the number of profiles within
a 1-mile radius of each sampling location. This distance was
chosen because the app allows users to see the distance (in feet)
of other app users up to a 1-mile radius, beyond which the
distance of other users is measured with less precision (in miles).
As we were only counting the number of users within each
sampling radii, no data were collected from user profiles.
Collection of other profile data was avoided as an extra
precaution beyond traditional ethics guidelines due to the need
for further ethical guidance on the use of internet-embedded,
publicly available geotagged data for public health and research
purposes [20].

As some users did not display their location on their profile, we
did not count users who withheld their location and were listed
on our screen such that it was unclear whether they were within
1 mile of our virtual sampling location (although we did count
users without location information when their inclusion was
unambiguous). Recognizing that the desire for greater privacy
might vary spatially, this limitation has the potential to
underestimate the number of users at some sampling locations
(eg, where discreet users worry that they might be identified
based on their location). In evaluating the extent to which this

limitation impacted our results, we sampled 500 profiles across
5 spatially diverse sampling locations and found that 25.4%
(127/500, range 19 to 32) of users did not provide location
information. Of these, 5.5% (7/127, range 0 to 3) were listed
such that their privacy settings made their inclusion ambiguous
(ie, less or greater than 1 mile). The remaining 120 participants
did not provide location information but were listed such that
dichotomizing their location (eg, 1 mile or more, less than 1
mile) was not difficult (ie, they appeared earlier in the
distance-ordered list of users than the farthest participant within
1 mile, thus indicating they resided within 1 mile).

As previous research has shown that app use is higher in the
evening and on weekdays [21], data were collected between
5:45 pm and 11:00 pm, Monday through Wednesday, in the last
week of November 2016. Dates were selected to represent a
normal weekday (eg, no holidays or LGBT events). To further
control for variance in use across time (ie, peak hours), we used
a random number generator to randomize the order in which
geographic locations were sampled. As users can access apps
from anywhere (eg, work, home, bars, bathhouse), it is likely
that some users access the app from multiple locations
throughout their day or week; therefore, individuals were
blocked so that they were not counted multiple times. When
accessing the app platform, we used a blank profile and did not
respond to private messages.

Figure 1. Study setting.
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Figure 2. Sampling strategy for mapping app user density. Dotted line represents 1-mile radius around each sampling location. Numbers represent the
order in which location was sampled.

Neighborhood Factors
Recognizing that social and demographic factors have previously
been associated with app use [22-25], risky sexual behavior
[4,26-29], and neighborhood residence among gay and bisexual
men [28,30-32], selected sociodemographic variables for each
dissemination area were derived from the 2016 Canadian Census
using the Census Analyzer developed by Computing in the
Humanities and Social Sciences at the University of Toronto.
Additional information on this data source is available elsewhere
[33]. Brief definitions for each variable included in our study
are provided in Textbox 1. Selection of included variables was
made based on their ubiquity in administrative datasets and
scientific surveys, thus improving the reproducibility of our
study [34]. Furthermore, measuring urbanity, gender, age,
ethnicity, socioeconomic status, family situation, and
immigration status, the selected variables represented a variety
of factors which have regularly been associated with
health-related outcomes [35-40].

Statistical Analysis
Spatial data were generated in ArcMap version 10.5 (Esri), and
statistical modeling was conducted in R version 3.4.4 (The R
Foundation). Bivariate and multivariable Poisson regression
models were used to identify neighborhood-level factors
associated with greater app user density. The spatial unit of
analysis for this regression was the 1-mile sampling radius
around each virtual sampling point. For each unit, app user
density, rounded to the nearest integer, was calculated by

dividing the number of app users observed at each sampling
location by the land area within the 1-mile sampling radius. As
explanatory variables were on the dissemination area level, we
created a combined area and population-weighted average for
each factor, which took into account the population size of each
dissemination area as well as the proportion of the dissemination
area within each sampling radius [41]. Final multivariable
models were constructed by initially including all candidate
variables of interest and then optimizing the Akaike information
criterion (AIC) by backwards elimination. As our sampling
method may have biased the app user density of location, we
forced inclusion of an interaction term that controlled for time
of day (ie, before 8 pm, 8 pm or later) and day of week (ie,
Monday, Tuesday, or Wednesday). As a widely used variable
selection method [42], particularly for exploratory analyses such
as those conducted in our study, this backwards elimination
procedure allowed us to identify the relatively best fitting
statistical model achievable from our candidate variables, thus
simultaneously improving the reproducibility of our study
procedures and ensuring the optimal inclusion of candidate
variables under conditions where closely related measures (eg,
income and education) might limit model accuracy or
performance. Comparing the final multivariable model to 1
including only population density and our time-day interaction
term, we used a likelihood ratio test [43] and a Bonferroni outlier
test [44], the latter of which allowed us to assess the relative
performance of the models and detect geographic areas of
interest with statistically unexpected app user densities.
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Textbox 1. Definitions of census dissemination area level characteristics.

• Population density (per 100): total population of all persons living in each dissemination area divided by the land area of the dissemination area.

Modeled as a per 100 resident increase in persons per km2.

• Percentage of residents who are male: percentage of residents in each dissemination area who are male.

• Average age of male residents: average age of male residents in each dissemination area.

• Median income of male residents (per Can $1000 [US $1300]): median annual income of male residents in each dissemination area. Modeled as
per Can $1000 increase in annual income.

• Percentage of male residents not married: percentage of male residents in each dissemination area who were not married and not living with a
common-law partner, including those who were never married, separated, divorced, or widowed.

• Percentage of male residents with a postsecondary education: percentage of male residents in each dissemination area who have credentials
beyond that of a high school diploma, including trade and apprenticeship certificates, college degrees, and university degrees.

• Percentage of male residents living below the low income cutoff (LICO) level: proportion of male residents in each dissemination area living
below the Canadian Census Bureau’s LICO level (ie, those with after-tax income levels more than 20 percentage points below that required to
afford food, shelter, and clothing in the dissemination area in which they reside).

• Percentage of males who are unemployed: percentage of male residents in each dissemination area who are unemployed.

• Percentage of male residents who are immigrants: percentage of male residents in each dissemination area who were born outside of Canada.

• Percentage of male residents who are visible minorities: percentage of male residents in each dissemination who are non-Caucasian in race or
nonwhite in color and who are not indigenous.

• Average household size of residents: average number of persons who occupy the same dwelling unit and do not have a usual place of residence
elsewhere in Canada or abroad.

Model fit was assessed using the McFadden likelihood-based

pseudo r2 and by reviewing other postmodel evaluation criteria
(such as the distributions of residuals). The Office of Research
Ethics at Simon Fraser University waived ethics approval, as
we collected only publicly accessible data (ie, counted the
number of profiles near each sampling location) and did not
engage users.

Results

A total of 2021 app user profiles were counted within 1 mile of
263 sampling locations. Figure 3 presents the population density
of each dissemination area, and Figure 4 presents the observed
app user densities at each sampling buffer. Table 1 provides
descriptive statistics for each dissemination area–level
characteristic examined in our model and the bivariate
associations with app user density.

In our simplified model examining the association between app
user density and population density (controlling for time and

day of sampling), each 100-person increase in population density
was associated with a 6.2% increase in app user density
(incidence rate ratio [IRR] 1.06, 95% CI 1.06-1.07). As

suggested by an increase in model fit (pseudo r2 .650 to .760),
the results of a likelihood ratio test (P<.001), and a 4-fold
reduction in the number of outliers (Figure 5) identified by a
Bonferroni model outlier test (ie, 4 to 1), an AIC optimized
model including all dissemination area characteristics of interest
had superior performance relative to this population
density–only model.

As shown in Table 2, this expanded model showed that app user
density was positively associated with population density,
average age of male residents, proportion of male residents who
were not married, proportion of males with a postsecondary
education, proportion of male residents who were immigrants,
proportion of males living below the low income cutoff (LICO)
level, and average household size of residents.
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Figure 3. Population density of dissemination areas in Metro Vancouver, colored by quantiles.

Figure 4. Observed density of app users, colored by natural breaks.
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Table 1. Descriptive statistics and bivariate associations with app user density for areal population-weighted dissemination area–level characteristics.

P valueMedian (Q1-Q3)2016 Census variable

<.001331.6 (59.2-1807.0)Population density (persons/km2)

<.00149.3 (48.6-50.5)Percentage of residents who are male

.58141.1 (38.2-44.1)Average age of male residents (years)

<.00148,567 (42,816-55,826)Median income of male residents (Can $)

<.00135.4 (30.9-40.5)Percentage of male residents not married

<.00157.6 (48.9-62.0)Percentage of male residents with a postsecondary education

<.0015.1 (3.4-6.1)Percentage of males who are unemployed

<.0017.0 (4.9-11.1)Percentage of male residents living below LICOa level

<.00127.2 (18.4-38.8)Percentage of male residents who are immigrants

<.00126.0 (12.4-46.8)Percentage of male residents who are visible minorities

<.0012.8 (2.6-3.0)Average household size of residents

aLICO: low income cutoff.

Figure 5. Model outliers in population density–only model (light and dark gray) and final multivariate model (dark gray only).
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Table 2. Multivariate Poisson regression examining areal population-weighted dissemination area–level characteristics associated with sampling area
app user density.

Incidence rate ratio (95% CI)Variable

1.03 (1.02-1.04)Population density (per 100)

0.93 (0.88-0.98)Average age of male residents

0.96 (0.92-0.99)Median income of male residents

0.93 (0.89-0.98)Percentage of male residents living below LICOa level

1.06 (1.03-1.10)Percentage of male residents with a postsecondary education

1.04 (1.004-1.07)Percentage of male residents who are immigrants

1.08 (1.02-1.13)Percentage of male residents not married

0.26 (0.11-0.62)Average household size of residents

Sampling time

ReferenceMonday: before 8:00 pm

2.16 (1.24-3.83)Monday: 8:00 pm or later

2.00 (1.07-3.79)Tuesday: before 8:00 pm

2.28 (1.44-3.77)Tuesday: 8:00 pm or later

1.15 (0.44-2.67)Wednesday: before 8:0 pm

1.13 (0.67-1.94)Wednesday: 8:00 pm or later

aLICO: low income cutoff.

Discussion

Principal Findings
Using a popular geosocial networking app designed for gbMSM,
we sampled over 2000 profiles that were within 1 mile of 263
randomly selected sampling sites in Metro Vancouver, Canada.
While our methodology extends those originally piloted by
Delaney et al [3], this study is novel in its use of this approach
to evaluate the relationship between app user density and other
neighborhood-level factors. In doing so, this pilot study supports
the use of geographic information systems in aiding public
health specialists to understand the spatial distribution of app
users. With that said, we acknowledge that the associations
identified in our study may be the result of ecological fallacy.
Addressing this possibility, we also recognize that several of
the factors associated with app user density in this pilot study
have also been shown to predict app use among gbMSM at the
person level.

Beginning with the social geography of app use, we note that
each 100-person increase in population density was associated
with a 6% increase in app user density in unadjusted models
and a 3% increase when accounting for other factors.
Furthermore, we see in Figures 4 and 5 that app user density is
dramatically higher in downtown Vancouver, particularly in
the historically gay neighborhood of Davie Village. This, along
with increased app user density in New Westminster (the
location of several LGBT-friendly amenities including a gay
bathhouse), shows that app user density tracks the distribution
of other gay-centric amenities quite well, perhaps indicating
that the social geography of online sex seeking has changed
from the patterns observed earlier in the internet’s history, when
online sex seekers were more likely to identify as bisexual, be

closeted, live outside major urban centers, and be disconnected
from the gay community [45]. If true, these patterns agree with
recent community-based research among gbMSM in Metro
Vancouver that suggests that online sex-seeking gbMSM
actually spend more time with other gbMSM and are equally
as likely to participate in the gay community compared with
those who do not seek sex online [46]. With that said, these
findings should not be interpreted to mean that rural gbMSM
do not use online venues. To do so would be to conflate app
use with app user density, the latter of which being a composite
measure that includes both the spatial distribution of gbMSM
and the prevalence of app use among these men. As such, we
note that previous studies have shown that rural men rely on
internet-enabled technologies to connect with one another,
particularly in rural localities where gbMSM are stigmatized
[47]. Interpreted with respect to this, it is possible that app user
density is higher in urban areas due to both a preference among
gbMSM to live in these areas [48] and the increased motivation
for app use proffered by greater opportunities to meet nearby
partners [49-51]. Regarding the first hypotheses, we should
comment that a growing body of literature has come to question
unidirectional migration patterns (ie, from rural to urban) of
LGBT people [6,52,53], and research regarding the latter
highlights how different motivations for technology use (eg, to
meet nearby partners for casual sex) may motivate urban MSM
to specifically use apps. With these varied perspectives in mind,
we acknowledge that the relationship between online sex
seeking, identity, disclosure, and community connectedness
remain important areas of study for the health and social
sciences [54].

More squarely within the focus of our pilot study, we found
that each 1% increase in the proportion of males who were not
married and each 1-person increase in average household size
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were associated with a respective 8% increase and 74% decrease
in app user density. The opposing effects here are consistent on
face value: with increasing household size being negatively
associated with an increasing proportion of residents who are
married. Likewise, given that previous research has shown that
the technographics of online dating are heavily biased toward
single and nonmonogamous users [22], an increasing proportion
of single residents in a given neighborhood is expectedly
associated with increasing app user density.

As with measures assessing marital status and household size,
the observation that each 1-year increase in the average age of
the male population was associated with a respective 7%
decrease in app user density is unsurprising. Again, the
technographics of app use tend to skew toward young gbMSM
[46,55]. Thus, neighborhoods with a greater proportion of young
men (and a lower average age) would be expected to have more
app users. However, again referring to Figures 4 and 5, we can
see that the outliers identified by our pilot study included the
sampling area in which the University of British Columbia is
located. Underscoring this spatial observation, we also
documented a 6% increase in app user density for each 1%
increase in the proportion of males who had a postsecondary
education. This finding too is supported by recent person-level
research in Metro Vancouver that has shown an association
between greater educational attainment and online sex seeking
[22]. Likewise, studies have documented higher educational
attainment among adult sexual minorities [56]. Together, these
disparate findings are suggestive of nuanced interrelationships
between residential location, app use, educational attainment,
and age. However, these cannot be fully explained by our
findings here and require additional research regarding the life
course of gay and bisexual men.

Moving to other closely related sociodemographic measures,
our study found that each 1% increase in the proportion of males
who were living below the LICO level and each Can $1000 (US
$1300) increase in the median income of males were associated
with a 7% and 4% decrease in app user density, respectively.
As these associations present seemingly contradictory findings,
we should first point out that median income and the proportion
of residents living below the LICO threshold represent
considerably different neighborhood and household conditions
despite both serving as measures of socioeconomic status [57].
Median incomes are the median total income residents receive
throughout a year. LICO thresholds are the income levels in
each dissemination area below which a household would devote
at least 20% more than the average family would on basic
necessities (ie, food, clothing, and shelter) [58]. An increasing
proportion of people living below LICO thresholds can indicate
an increasing proportion of impoverished residents as well as
an increasing cost of living in a given neighborhood. Therefore,
the negative associations between app user density and these 2
measures may indicate that app user density is lower in both
cash-strapped neighborhoods (regardless of overall income
levels) and those where incomes are depressed. In either case,
these trends may be associated with greater constraints placed
on the time of residents or attributable to differing lifestyles of
residents in these neighborhoods. Supporting this interpretation,
previous research examining the association between individual

income and app use found that app use on weekdays (during
which this study was conducted) is associated with having lower
income [21]. As such, caution should be taken when interpreting
these findings, as patterns of app user density on weekends
might eliminate or reverse this association. In any case, further
qualitative research may be needed to understand how app use,
neighborhood residence, and socioeconomic status relate to one
another.

The same is likely true regarding the final measure included in
our multivariable model. Indeed, as is often the case with
research addressing multiple intersecting identities [59], to our
knowledge little attention has been specifically devoted to the
diverse phenomenon of app use among immigrant gbMSM or
those living in semisegregated immigrant neighborhoods [60],
yet in our study we found that each 1% increase in the
proportion of males who were immigrants was associated with
a 4% increase in app user density. It is possible that immigrants
rely on apps as ways to connect with other gay men, perhaps
due to the lack of LGBT venues available to them in ethnically
segregated neighborhoods [61] or, alternatively, due to their
desire to explore their sexuality discreetly [60]. In either case,
this association highlights the importance of diversifying sexual
health services and ensuring that they are accessible to those
living outside traditional gay villages that often have the
reputation of being for wealthy, white, gay men and their straight
allies [62,63].

Implications
Given the findings outlined, future studies are needed to assess
the generalizability of these piloted methods and determine the
generalizability of these results outside Metro Vancouver.
Laying groundwork for such a validation, our pilot study
provides a proof of concept for methods that might be used by
public health leaders to optimize the delivery and focus of HIV
prevention services by targeting populations at elevated risk for
HIV transmission using administrative and geotagged data.
While we are not aware of any studies that have leveraged this
type of data to improve the delivery of HIV services (ie, location
of new services, mobile testing vans) to high-risk
neighborhoods, some work has shown that administrative data
can be used to identify neighborhoods at risk for other adverse
health outcomes [26]. Combining spatial data from various
sources (such as dating apps) with administrative data may,
therefore, provide an important opportunity for knowledge
translation in the context of sexual health, allowing providers
to deliver health care services to at-risk neighborhoods. This is
especially true for jurisdictions that have invested in mobile
testing services [64], online-initiated testing services [65], or
other flexible health promotion programs. Further, by planning
HIV care using a neighborhood-level perspective [66], public
health and community leaders can better justify support for
targeted interventions that can address the varied
context-specific needs and concerns of local communities [4].

Limitations
That said, the findings discussed are limited by several potential
biases. First, and perhaps most importantly, readers should be
aware that sociodemographic census-level factors may not
reflect the characteristics of the app users sampled here. Second,
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because our explanatory variables are averaged across several
dissemination areas, the accuracy of our estimates may be
limited. However, because dissemination areas are
administrative boundaries that are not necessarily reflective of
the natural gradation of the characteristics, it is unclear to what
extent these units might have biased our results. Future studies
should employ a more purposeful sampling design that might
better capture app user density within natural communities.
Third, our data do not describe from where sampled users are
accessing apps (eg, from bars or their home). Therefore, the
data generated for this study do not necessarily reflect the
residential location of gbMSM but rather where they use the
apps on a typical weekday evening. Importantly, while the time
and days selected for sampling were purposeful, the effects of
sampling error may introduce bias into our study design. To
account for this, we randomly assigned the order in which
location points were sampled. However, it is still possible that
temporal patterns of app use vary by some nonrandom factor
(eg, daily routines). Indeed, it is not entirely clear how patterns
of app use might vary across the day or week. Future analyses
should explore these temporal patterns to determine why and
to what degree app use varies across time and under what
conditions gbMSM use apps. Fourth, this study was conducted
using only a single app. While the app we selected is among
the most popular apps for gbMSM [18], few studies have
examined differences between apps that are targeted to and as
a result taken up by specific subcultures or subgroups within
the gay community. It is therefore possible that the spatial
density of app users is reflective of only a subset of gbMSM
who use apps to find sexual partners. Future work should
investigate whether our results are reproducible with other apps
such as those targeting older men, ethnic minority men, or men

interested in “kink.” That said, previous research has shown
that there is a large amount of overlap in the apps used by
gbMSM. For instance, 1 study reported a median number of
apps per user as 3.11 [21]. Fifth, as our multivariable model

had a pseudo r2 of .76, omitted variables not accounted for in
this study may also affect app user density. These likely include
factors that are difficult to measure using administrative data
or are at least rarely measured in these data sources, such as
sexual orientation, prevalence of HIV, the social climate toward
sexual minorities in a given neighborhood, or a person’s ability
to meet sexual partners via other venues. Similarly, our models
have yet to be validated for other settings and given that they
were developed as exploratory, proof-of-concept models, further
research is needed before these or similar models are used
authoritatively to inform the deployment of health resources.
Therefore, future studies should seek out other datasets and data
sources from which models might be derived, thus providing a
more complete and empirically valid picture of the ecological
factors associated with app user density (eg, male population
density vs general population density, same-sex households).

Conclusions
Findings from this pilot study highlight the potential utility of
using geographic information systems to better understand the
spatial density of gbMSM, particularly among those who use
geosocial networking apps and live in urban settings. While
additional analyses are needed to validate the modeling
techniques explored here and understand the impact of various
sampling decisions (eg, time of day, choice of app provider),
our findings suggest that these methods may be useful for public
health and community leaders hoping to better understand the
communities of gbMSM they serve.
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Abstract

Background: Although asthma and chronic obstructive pulmonary disease (COPD) are clinically distinct diseases, they represent
biologically diverse and overlapping clinical entities and it has been observed that they often co-occur. Some research and
theorizing suggest there is a common comorbid condition termed asthma-chronic obstructive pulmonary disease overlap (ACO).
However, the existence of ACO is controversial.

Objective: The objective of this study is to describe patient characteristics and estimate prevalence, health care utilization, and
costs of ACO using claims-based diagnoses confirmed with medical record information.

Methods: Eligible patients were commercial US health plan enrollees; ≥40 years; had asthma, COPD, or ACO; ≥3 prescription
fills for asthma/COPD medications; and ≥2 spirometry tests. Records for a random sample of 5000 patients with ACO were
reviewed to validate claims-based diagnoses.

Results: The estimated ACO prevalence was 6% (estimated 10,250/183,521) among 183,521 full study patients. In the
claims-based cohorts, the comorbidity burden for ACO was greater versus asthma but similar to COPD cohorts. Medication
utilization was higher in ACO versus asthma and COPD. Mean total health care costs were significantly higher for ACO versus
asthma but similar to COPD. In confirmed diagnoses cohorts, mean total health care costs (medical plus pharmacy) were lower
for ACO versus COPD but similar to asthma (US $20,035; P=.56). Among confirmed cases, where there was medical record
evidence, smoking history was higher in ACO (300/343, 87.5%) versus asthma cohorts (100/181, 55.2%) but similar to COPD
(68/84, 81%).

Conclusions: ACO had more comorbidities, medication utilization, and costs than patients with asthma or COPD but differences
were not seen after confirmation with medical records.

(JMIR Public Health Surveill 2018;4(3):e60)   doi:10.2196/publichealth.9930

KEYWORDS

COPD; asthma; asthma-COPD overlap; ACO; claims data; medical records; diagnosis validation

Introduction

Obstructive lung disease is a significant public health problem.
Combined, airway diseases such as asthma and chronic
obstructive pulmonary disease (COPD) affect up to 15% of

adults in the United States, cause more than a million
hospitalizations, and over 15 million lost work days [1]. The
global effects of combined asthma and COPD are even more
dramatic—300 million people are affected by COPD, and up
to 300 million by asthma. COPD, the third leading cause of
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death worldwide, is associated with an estimated 3 million
deaths per year, and asthma with 200,000 deaths per year [2].

Although asthma and COPD are clinically distinct diseases,
they represent biologically diverse and overlapping clinical
entities. Clinicians have been studying asthma and COPD in
relation to each other for more than half a century, since the
formulation of the Dutch hypothesis in 1961 [3,4]. Asthma and
COPD overlap [5] commands considerable attention and is
discussed comprehensively in guidelines such as the Global
Initiative for Asthma [6] and the Global Initiative for Lung
Disease for COPD [7].

Asthma-COPD overlap (ACO; previously referred to as
asthma-COPD overlap syndrome) is characterized by persistent
airflow limitation consistent with COPD, together with several
distinguishing features of asthma [7]. Prevalence estimates for
ACO range from 5.5% to 55% [8-14] and the large discrepancy
islikely attributable to differences in diagnostic criteria for
asthma and COPD [5] and other factors, including age and
gender [15]. Despite a growing body of literature, no standard
exists to identify the syndrome and there is no consensus
definition [16]. The result is a mixed picture of overlapping
symptoms, patient characteristics, and comorbidities not reliably
differentiated from asthma and COPD [17].

The literature suggests that, compared with asthma or COPD,
ACO is associated with more rapid decline in lung function,
more frequent exacerbations, increased health care resource
utilization, worsening quality of life, and higher mortality rates
[16,18,19]. This profile, however, relies on diversely defined
populations and prevalence estimates [15,17,20] and might have
dubious diagnostic utility.

The treatment responses of patients with ACO could be
important for clinical decisions, suggesting potential value in
additional, more precise characterization of this disease entity
[5,15]. Little epidemiologic research has critically evaluated
patterns of clinical diagnosis using the commonly used
overlapping International Classification of Diseases, Ninth
Revision (ICD-9) code patterns for asthma and COPD which
can suggest possible ACO, indicating an important gap in
knowledge. Such patterns of diagnosis might provide additional
clues to better characterize the disease entity. A better
understanding of the features of ACO might lead to improved
diagnosis and treatment of this entity and improvements in
public health for those patients affected by airways disease

Respiratory diseases, notably asthma and COPD, have resulted
in immense clinical and economic challenges for public health
[21,22]. Health services vigilantly investigate and seek to
understand the epidemiological trends of respiratory diseases
in the US, historically striving to maintain a state of readiness
to respond [23-25]. While infectious respiratory conditions
remain a major concern, changing environmental conditions
and stresses from expanding industrial, military, and agricultural
activities require greater vigilance and laboratory, hospital, and
rehabilitation resources. Increasingly prevalent and worsening
asthma and COPD, and by extension ACO, could strain the
clinical and financial resources of public health services in the
US and globally [26]. Better characterization and more accurate
diagnosis will help in in the management of ACO, and in the

development of better preventive public health strategies to
decrease the impact of this clinical entity.

To help to address this gap in knowledge about ACO, this
medical record based observational study employed a more
rigorous research design—stricter inclusion criteria, plus
confirmation of ICD-9 code-based identification of ACO with
medical record review—than prior similar claims-based studies.
The objective was to estimate the prevalence of ACO in a
population of asthma or COPD patients, and describe patterns
using an enhanced dual identification approach. Additionally,
this study sought to describe medication utilization and health
care costs of patients with ACO compared to patients with only
asthma or COPD.

Methods

Data Source
Data were queried from the HealthCore Integrated Research
Database, a single payor health insurance repository of
administrative claims data for approximately 43 million
members at the time of study. Applicable regulations and the
Health Insurance Portability and Accountability Act were
followed strictly; the study was approved by the New England
Institutional Review Board.

Study Design and Patient Population
This retrospective cohort study used administrative claims data
and medical record reviews between January 1, 2006 and
October 31, 2015 (see Multimedia Appendix 1). The index date
(first date patients met inclusion criteria) occurred during the
intake period, which was between 1 January 2007 and 31
October 2014. Study patients were health plan members, ≥40
years old on index date, and with 12 months pre- and postindex
health plan eligibility. Three cohorts were examined (asthma,
COPD, or ACO) based on having (1) ≥2 diagnoses (≥30 days
apart) for asthma (International Classification of Diseases, Ninth
Revision, Clinical Modification [ICD-9-CM] code 493) or
COPD (ICD-9 CM codes 491, 492, and 496), (2) ≥2 procedure
codes (≥30 days apart) for asthma-related or COPD-related
procedures, (3) ≥3 Generic Product Identifier (GPI)-defined
prescription fills (≥30 days apart) for asthma or COPD
medication, and (4) ≥2 Current Procedural Terminology codes
for spirometry tests. Asthma- and COPD-only cohorts had
neither diagnostic nor procedure codes for the other disorder.
Patients meeting criteria for both asthma and COPD constituted
the claims-positive ACO cohort. Patients with a preindex cancer
diagnosis were excluded.

Medical Record Review
ACO was confirmed for the purposes of this study by medical
record review of 5000 randomly selected claims-positive patients
with ACO during 2015-2016, whose outpatient records were
abstracted using a standardized form. COPD was confirmed by
persistent airflow obstruction (forced expiratory volume in 1
second [FEV1]/forced vital capacity [FVC] less than 0.70) at
symptom baseline. Positive computed tomography
documentation of emphysema was not required but considered
supportive of COPD diagnosis. Medical record confirmation
of asthma included any two of the following: allergic rhinitis,
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chronic sinusitis or eczema, positive skin test or desensitization
to environmental allergens, medical history of asthma before
age 40 years, or family history of asthma [16]. Smoking status
was assessed by medical record review. Patients with medical
record features consistent with COPD or asthma as described
above we considered to have medical record “confirmed”
diagnoses of these disorders, and those with medical record
features of both COPD and asthma were considered to have
“confirmed ACO” Spirometry criteria for reversibility were not
used because reversibility has been shown to occur with COPD
as well as asthma, so therefore cannot be used to differentiate
COPD from asthma [27].

Outcome Measures
Demographic variables were measured on the index date. The
Deyo-Charlson Comorbidity Index (DCI) [28] score provided
a baseline of illness burden. Smoking history was determined
from Current Procedural Terminology codes for tobacco
cessation counseling (99406, 99407) and use disorder
(ICD-9-CM 305.1; V1582). Asthma and COPD medication
utilization was assessed with GPI codes. All-cause medical and
pharmacy costs were assessed for the 12-month post-index
period. Total health care costs included inpatient, emergency
department, outpatient, and pharmacy expenditures. Costs were
adjusted to 2016 values using the consumer price index for US
medical care services [29].

Statistical Analysis
The study population was characterized with descriptive
statistics. Frequencies and percentages were reported for
categorical variables; means, medians, and standard deviations
for continuous variables. Correspondence analysis was
conducted to graphically describe the overlap of asthma and
COPD ICD-9 codes with medical records [30-32].
Correspondence analysis is conceptually similar to principal
component analysis, but applies to categorical rather than
continuous data. In a similar manner to principal component
analysis, it provides a means of displaying or summarizing a
set of data in two-dimensional graphical form. Comparisons
among cohorts for response measures were conducted using
paired-comparison t tests for continuous variables or Z tests for
percentage differences for categorical variables. Generalized
linear model analyses (GLM) using a log link with gamma
distribution were used for cost analyses. The GLM is a flexible
generalization of ordinary linear regression that allows for
response variables that have error distribution models other than
a normal distribution. The GLM generalizes linear regression
by allowing the linear model to be related to the response
variable via a link function and by allowing the magnitude of
the variance of each measurement to be a function of its
predicted value. Alpha was set at .05, 2-sided, for statistical
significance.

Results

Overview
A total of 2,219,034 patients had ≥1 claim for asthma and/or
COPD; of those, 20,459 met the inclusion and exclusion criteria
and had claims-positive ACO; similarly, 17,156 had

claims-positive COPD; and 145,906 had claims-positive asthma
(see Multimedia Appendix 1).

Prevalence
Of the 5000 ACO patients randomly selected for medical record
review, 3038 were excluded because of missing records,
providers not located, or providers not complying with requests.
From the 1962 available records, 1181 were excluded because
of absent spirometry results or FEV1/FVC values. The remaining
781 successful medical record reviews confirmed ACO in 391
(50.1%) of the patients; 206 (26.4%) with confirmed asthma
only; and 106 (13.6%) with confirmed COPD only (see
Multimedia Appendices 1 and 2). A total of 78 patients were
excluded from analyses as their medical records supported
neither an asthma nor COPD diagnosis. We assumed that the
proportions of confirmed ACO diagnoses would be similar for
patients with medical record reviews compared to study patients
overall. Extrapolating the 50.1% ACO confirmation rate to the
full claims-positive ACO cohort (20,459 patients) yielded 10,250
patients meeting the confirmation criteria. Dividing this
numerator (10,250 patients) by the total number of patients
found with ≥1 criterion for asthma or COPD (183,521 patients)
resulted in an estimated ACO prevalence of approximately 6%.

Description of Overlapping Asthma and Chronic
Obstructive Pulmonary Disease Diagnoses
Most confirmed ACO patients had several overlapping asthma
diagnoses; however, the only overlapping COPD ICD-9 code
diagnoses were chronic bronchitis and emphysema (see
Multimedia Appendix 3). The most common cross ACO ICD-9
codes were chronic bronchitis mixed with chronic obstructive
asthma (51/391, 13.0%), COPD chronic airway disorder
occurring with unspecified asthma (50/391, 12.8%), chronic
bronchitis comorbid with unspecified asthma (49/391, 12.5%),
and patients with both COPD chronic bronchitis and COPD
emphysema, as well as chronic obstructive asthma (46/391,
11.8%).

Correspondence analysis confirmed the ACO population. The

χ2 value was 55.08 (P<.001), indicating significant
cross-asthma-COPD diagnostic patterns. A 2-dimensional
solution accounted for 51.1% of the total variance; dimension
1 for 29.1% and dimension 2 for 22% of total variance (Figure
1). Of the COPD ICD-9 diagnoses codes, chronic bronchitis,
chronic airway disease (CAD), and comorbid chronic bronchitis
and emphysema diagnoses occurred most frequently; and
chronic bronchitis was the most central to the COPD code for
the primary cluster of patients. CAD and comorbid chronic
bronchitis and or emphysema patterns occurred together less
frequently; the codes were about two standard deviations apart.
Frequently occurring overlapping asthma symptoms included
extrinsic asthma, both unspecified and chronic obstructive forms,
also reflecting substantial variation (Figure 1), and heterogeneity
in dual diagnosis patterns within ACO. Dimension 2 defined a
distinct set of codes comprising multiple mixed asthma
diagnoses and emphysema, while differentiating a group of
infrequent joint diagnoses with little in common with core ACO
characteristics. Few patients (6.1%) were captured in the second
cluster.
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Figure 1. Correspondence analysis biplot of ICD-9-CM subtypes of ACO condition patients. The x- and y-axes are in z-scale metric. Rectangles define
two distinct dimensions of patients. The black rectangle encapsulates the historical view that chronic bronchitis is most central to the condition. Note
there is variation along x-axis indicating within cluster heterogeneity. The red rectangle captures a distinct dimension that is 1.5 SD distance from the
core cluster. This cluster is comprised of multiple mixed asthma diagnoses and emphysema. Overall, there is substantial symptom variation within the
ACO condition. Intrin: intrinsic asthma; Extrin: extrinsic asthma; COA: chronic obstructive asthma; Asthma UNS: asthma unspecified; Emphy: COPD
emphysema; ChBron: COPD chronic bronchitis; COPD CAD: COPD chronic airway obstruction.

Cohort Characteristics and Comorbid Illnesses
A comparison of the mean ages of the claims-based cohorts
suggested ACO patients were older (68.4 years, SD 11.4) than
asthma patients (53.4 years, SD 9.5) but similar to those with
COPD (67.0 years, SD 10.8). In the confirmed cohorts, all
groups were of similar age: ACO (68.2 years, SD 11.0), COPD
(71.4 years, SD 9.3), and asthma (67.9 years, SD 11.1). Women
were the majority in the claims-positive cohorts for both ACO
(13,155/20,459, 64.30%) and asthma (99,362/145,906, 68.10%),
but not for COPD (8012/17,156, 46.70%). This difference was
not observed in the confirmed cohorts with women being the
majority in all groups (ACO 232/391, 59.3%; COPD 62/106,
58.5%; and asthma 148/206, 71.8%).

Comorbidity severity (DCI scores) was similar in the
claims-positive ACO and COPD cohorts (mean DCI 1.5 for
both cohorts, SD 1.7; P=.87), but higher than the claims-positive
asthma cohort (mean DCI 0.4, SD 0.9; P<.001; Tables 1 and
2). In the confirmed diagnosis cohorts, however, comorbidity
severity was lower for ACO (mean DCI score 1.3, SD 1.5)

versus the COPD cohort (mean DCI score 1.9, SD 2.0; P=.007),
but similar to the asthma cohort (mean DCI score 1.5, SD 1.6;
P=.11).

Smoking History
Smoking was significantly less common in the claims-positive
ACO cohort (4133/20,459, 20.2%) versus the COPD cohort
(5215/17,156, 30.40%; P<.001) but more common than in the
claims-positive asthma cohort (6128/145,906, 4.20%; P<.001;
Tables 1 and 2). No significant difference was seen among the
confirmed diagnosis cohorts for claims-assessed smoking: ACO
(90/391, 23%) and asthma (35/206, 17.0%; P=.27) and COPD
(26/106, 24.5%; P=.68) cohorts. The difference between the
confirmed asthma and confirmed COPD cohorts was statistically
significant (P=.047). Among the chart reviewed subjects, there
was no information on previous or current smoking behavior
for 25/206 (12.1%) confirmed asthma cases, 22/106 (20.8%)
confirmed COPD cases, and 48/391 (12.3%) confirmed ACO
cases. Therefore, the denominators for chart reviewed smoking
behavior was 181 for confirmed asthma, 84 for confirmed
COPD, and 343 for confirmed ACO.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 |e60 | p.97http://publichealth.jmir.org/2018/3/e60/
(page number not for citation purposes)

Turner et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic characteristics and comorbidities for the claims positive cohort.

P valueACOb (n=20,459)COPDa (n=17,156)Asthma (n=145,906)Demographics

Asthma vs COPDCOPD vs ACOAsthma vs ACO

<.001<.001<.00168.4 (11.4)67.0 (10.8)53.4 (9.5)Age (years), mean (SD)

<.001<.001<.00113,155 (64.3)8012 (46.7)99,362 (68.1)Female, n (%)

Comorbidity

<.001.86<.0011.5 (1.7)1.5 (1.7)0.4 (0.9)DCIc, mean (SD)

Smoking

<.001<.001<.0014133 (20.2)5215 (30.4)6128 (4.2)Claims-assessed, n (%)

aCOPD: chronic obstructive pulmonary disease.
bACO: asthma-COPD overlap.
cDCI: Deyo-Charlson Comorbidity Index.

Table 2. Demographic characteristics and comorbidities confirmed diagnosis cohort (based on the random sample of 5000 patients randomly drawn
for the claims-positive asthma-chronic obstructive pulmonary disease [COPD] overlap [ACO] cohort).

P valueACO (n=391)COPD (n=106)Asthma (n=206)Demographics

Asthma vs COPDCOPD vs ACOAsthma vs ACO

.003.003.6968.2 (11.0)71.4 (9.3)67.9 (11.1)Age (years), mean (SD)

.017.88.003232 (59.3)62 (58.5)148 (71.8)Female, n (%)

Comorbidity

.10.007.111.3 (1.5)1.9 (2.0)1.5 (1.6)DCIa, mean (SD)

Smoking

.047.68.2790 (23)26 (25)35 (17)Claims-assessed, n (%)

<.001<.001<.001300 (87.5)d68 (81)c100 (55.2)bChart-assessed, n (%)

.001.001.6748 (12.3)22 (20.8)25 (12.1)Not documentede, n (%)

aDCI: Deyo-Charlson Comorbidity Index.
bn=181.
cn=84.
dn=343.
eSmoking not documented in medical record.

Thus, the medical record data indicated the confirmed ACO
cohort (300/343, 87.5%) had significantly higher percentage of
past or present smoking than the confirmed COPD (68/84, 81%;
P<.001) and confirmed asthma cohorts (100/181, 55.2%;
P<.001). A significantly greater proportion of patients in the
confirmed COPD cohort had a history of smoking, compared
with the confirmed asthma cohort (P<.001).

Medication Utilization
Use of asthma and COPD medications was higher among
patients in the claims-positive ACO cohort compared with
patients in the claims-positive asthma and COPD cohorts (Tables
3 and 4). The only exceptions were the use of long-acting
muscarinic antagonists (LAMA), which was higher in the
claims-positive COPD (6391/17,156, 37.25%) cohort than in
the ACO cohort (6138/20,459, 30.0%; P<.001), and long-acting
beta2-agonists (LABA) were higher in the COPD cohort
(635/17,156, 3.7%) compared to ACO (716/20,459, 3.5%;
P=.04). Inhaled corticosteroid (ICS) use was not statistically

significantly different between the claims-positive asthma and
claims-positive ACO cohorts (25,242/145,906; 17.3% vs
3805/20,459; 18.6%; P=.09). The claims-positive COPD and
ACO cohorts had similar use of short-acting beta-agonist and
short-acting muscarinic antagonists (SABA/SAMA;
2728/17,156; 15.9% vs 3110/17,156; 15.2%, respectively;
P=.76) and SAMA (652/17,156; 3.8% vs 859/20,459; 4.2%,
respectively; P=.32). In contrast, asthma and COPD medication
use was largely similar among patients in the confirmed ACO
cohort compared with the confirmed asthma and COPD cohorts
(Tables 3 and 4). Compared with the confirmed ACO cohort,
the confirmed asthma cohort had lower use of ICS/LABA
(59.6% vs 44.7%, respectively; P=.001), LAMA (34.0% vs
18.0%, respectively; P<.001), SABA/SAMA (18.4% vs 11.2%,
respectively; P=.02), and LABA (4.6% vs 1.5%, respectively;
P=.01). Only the use of LAMA was lower in the confirmed
ACO cohort compared with the confirmed COPD cohort (34.0%
vs 44.3%, respectively; P=.05), and only ICS use was higher
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in the confirmed ACO cohort than in the confirmed COPD cohort (21.2% vs 12.3%, respectively; P=.04).

Table 3. Chronic obstructive pulmonary disease (COPD) or asthma medication use during the 12-month follow-up period for the claims positive cohort.

P valuebACOa (n=20,459),
n (%)

COPD (n=17,156),
n (%)

Asthma (n=145,906),
n (%)

Asthma or COPD
medication

Asthma vs COPDCOPD vs ACOAsthma vs ACO

<.001<.001<.00112,337 (60.3)7463 (43.5)82,583 (56.6)SABAc

<.001<.001<.00111,518 (56.3)7377 (43.3)51,067 (35.0)OCSd

<.001<.001<.00111,191 (54.7)6554 (38.2)49,024 (33.6)ICSe/LABAf

<.001.001.0015729 (28.0)926 (5.4)39,103 (26.8)LTRAg

<.001<.001.0913805 (18.6)1269 (7.4)25,242 (17.3)ICS

<.001.76<.0013110 (15.2)2728 (15.9)3648 (2.5)SABA/SAMAh

.01.04<.001716 (3.5)635 (3.7)3210 (2.2)LABA

<.001<.001<.0016138 (30.0)6391 (37.2)1605 (1.1)LAMAi

<.001.32<.001859 (4.2)652 (3.8)1167 (0.8)SAMA

aACO: asthma-COPD overlap.
bSignificance calculated using a Z test for differences in column proportions.
cSABA: short-acting beta2-agonist.
dOCS: oral corticosteroid.
eICS: inhaled corticosteroid.
fLABA: long-acting beta2-agonist.
gLTRA: leukotriene receptor antagonist.
hSAMA: short-acting muscarinic antagonist.
iLAMA: long-acting muscarinic antagonist.
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Table 4. Chronic obstructive pulmonary disease (COPD) or asthma medication use during the 12-month follow-up period for the confirmed diagnosis
cohort (based on the random sample of 5000 patients randomly drawn for the claims-positive asthma-COPD overlap [ACO] cohort).

P valueaACO (n=391),
n (%)

COPD (n=106),
n (%)

Asthma (n=206),
n (%)

Asthma or COPD
medication

Asthma vs COPDCOPD vs ACOAsthma vs ACO

.28.93.16249 (63.7)68 (64.2)119 (57.8)SABAb

.39.84.36228 (58.3)63 (59.4)112 (54.4)OCSc

.07.47.001233 (59.6)59 (55.7)92 (44.7)ICSd/LABAe

.04.20.19109 (27.9)23 (21.7)68 (33.0)LTRAf

.11.04.6083 (21.2)13 (12.3)40 (19.4)ICS

<.001.05<.001133 (34.0)47 (44.3)37 (18.0)LAMAg

.22.57.0272 (18.4)17 (16.0)23 (11.2)SABA/SAMAh

.98.28.0921 (5.4)3 (2.8)5 (2.4)SAMA

.041.0.04718 (4.6)5 (4.7)3 (1.5)LABA

aSignificance calculated using a Z test for differences in column proportions.
bSABA: short-acting beta2-agonist.
cOCS: oral corticosteroid.
dICS: inhaled corticosteroid.
eLABA: long-acting beta2-agonist.
fLTRA: leukotriene receptor antagonist.
gLAMA: long-acting muscarinic antagonist.
hSAMA: short-acting muscarinic antagonist.

Table 5. All-cause health care costs during follow-up.

P valuecACObCOPDaAsthmaAll-cause health care costs

Asthma vs
COPD

COPD vs
ACO

Asthma vs
ACO

Claims positive cohort

———20,45917,156145,906Patients, n

<.001.690<.00125,307 (42,735)25,546 (54,118)10,103 (18,987)Total costs (US $), mean (SD)

<.001.003<.00110,311 (35,065)11,251 (45,205)1836 (13,419)Inpatient

<.001<.001<.001701 (2456)506 (1707)397 (1518)Emergency department

<.001.475<.0019050 (18,602)8,826 (21,557)4682 (9503)Outpatient

<.001<.001<.0015594 (8652)4963 (7438)3188 (5079)Prescription

Confirmed diagnosis cohort

———391106206Patients, n

.007.001.56019,419 (23,353)27,132 (34,680)20,311 (23,122)Total costs (US $), mean (SD)

.011.030.4977026 (18,258)13537 (28,003)5973 (16,080)Inpatient

.411.083.274743 (2548)462 (1113)587 (1945)Emergency department

.132.007.0026257 (7020)8614 (13,596)9393 (14,460)Outpatient

.705.086.0085393 (8579)4518 (3594)4358 (3590)Prescription

aCOPD: chronic obstructive pulmonary disease.
bACO: asthma-COPD overlap.
cSignificance calculated using a Z test for differences in column proportions.
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Health Care Costs
Mean total health care costs 12 months postindex were
significantly higher for patients in the claims-positive ACO
cohort compared with the claims-positive asthma cohort (US
$25,307 vs US $9966, respectively; P<.001), but similar to the
claims-positive COPD cohort (US $25,198; P=.69; Table 5).
Mean costs in the claims-positive ACO cohort were significantly
higher than the claims-positive asthma cohort for inpatient (US
$10,171 vs US $1811, respectively; P<.001), emergency
department (US $691 vs US $391, respectively; P<.001),
outpatient (US $8927 vs US $4618, respectively; P<.001), and
prescription expenditures (US $8534 vs US $3145, respectively;
P<.001). Mean costs in the claims-positive ACO cohort were
lower than in the claims-positive COPD cohort for inpatient
costs (US $10,171 ACO vs US $11,098 COPD; P=.003) but
higher for emergency department costs (US $692 ACO vs US
$499 COPD; P<.001).

When mean total costs were compared among the confirmed
cohorts, however, the ACO cohort had significantly lower costs
than the COPD cohort (US $19,155 vs US $26,762, respectively;
P=.001) but similar to those of the asthma cohort (US $20,035;
P=.56). The confirmed ACO cohort had lower mean costs than
the confirmed asthma cohort for outpatient (US $6172 ACO vs
US $9265 asthma; P=.002) and prescription costs (US $5320
ACO vs US $4299 asthma; P=.008), and lower mean costs than
the confirmed COPD cohort for inpatient (US $6930 ACO vs
US $13,353 COPD; P=.03) and outpatient costs (US $6172
ACO vs US $8497; P=.007).

Discussion

Principal Results
The prevalence of ACO in this study population was estimated
at 6%, determined by a claims-based definition combined with
medical record review to further support the diagnosis. We
extrapolated the proportion of medical record confirmed ACO
diagnoses from the medical record review (50.1%) to the wider
claims-based asthma, COPD, and ACO study population.
Medical record review added specificity to ACO diagnoses
versus claims alone. Historically in claims-based studies of
ACO patients were considered as meeting the definition for
ACO if patients had a minimum number of ICD code diagnosis
for both COPD and asthma on different occasions. Given the
substantial overlap in asthma and COPD symptoms, patients
could be diagnosed with either condition by clinicians, this may
reflect some degree of ambiguity regarding which clinical
diagnosis patients actually are manifesting, therefore reflecting
a diagnostic challenge rather than a true clinical overlap
syndrome. We have attempted to clarify this situation by going
beyond the ICD-9 codes in a sample of patients to identify those
patients who meet the traditional claims-based attribution of
ACO, but also have corroborating information in the medical
record that features of both asthma and COPD actually exist
and the ICD-9 codes are to some degree supportable. We were
therefore able to define a group of patients who had ICD-9-based
characterization of ACO, COPD, and asthma but also ICD-9-
and medical record review-based characterization as ACO,
COPD, and asthma; and, consequently, compare these two

groups. This provided useful information on the condition of
ACO but also on the role of claims-based research in the future
study of this syndrome.

Current or past tobacco smokers were at higher risk for ACO.
Greater proportions of both claims-positive COPD and ACO
patients smoked, and the confirmed ACO cohort had a
significantly higher percentage of past or present smoking than
the confirmed COPD and the confirmed asthma cohorts. Van
den Berg and Aalbers suggested two ACO clinical phenotypes:
never-, ex-, or current smokers with a history of asthma who
have incompletely reversible airflow obstruction; and smokers
or ex-smokers with COPD who display increased bronchodilator
reversibility [17]. Our data underscored the key association of
smoking with ACO as likely contributing to the evolution of
the persistent airflow limitation feature of this clinical entity.
The difference between confirmed ACO and confirmed asthma
was largely the evidence of persistent airflow limitation based
on FEV1/FVC.

Results from the correspondence analysis question the rationale
for including patients with diagnosed emphysema in future
studies as they have little in common with the majority of ACO
patients. Diagnoses most central to ACO were chronic
bronchitis, chronic airway disease, chronic obstructive asthma,
asthma not otherwise specified, and extrinsic asthma.
Additionally, symptom patterns can present differently. The
overlapping diagnostic codes reflecting bronchitis or airway
disease may suggest bronchitis symptoms (cough, phlegm
production, etc) are more suggestive of ACO versus COPD.
This merits further study.

Demographic and comorbidity profiles were similar for
confirmed ACO and COPD cohorts. The claims-positive ACO
cohort had a greater comorbidity burden than the claims-positive
asthma cohort, demonstrating differences between claims-based
and medical record-confirmed definitions of ACO. Likewise,
evidence in the claims-based cohorts showed greater use of
most asthma and COPD medications for ACO patients versus
the other two cohorts but results for confirmed cohorts did not
show as many significant differences. ICS/LABA, LAMA,
SABA/SAMA, and LABA usage was greater in the confirmed
ACO versus the confirmed asthma cohort; use of ICSs was
greater compared with confirmed COPD cohort, suggesting that
ACO might be more responsive to ICSs. The results indicate
that ACO patients are prescribed the same amount—or
more—asthma and COPD medications as patients with asthma
or COPD alone.

Higher ACO versus asthma costs were seen across inpatient,
emergency department, outpatient, and pharmacy categories.
Costs were lower, however, for all categories for COPD versus
ACO patients, except for emergency department services where
ACO-attributable costs were significantly greater than
COPD-attributable costs. Costs were different in the confirmed
cohorts. ACO patients had significatly lower costs than COPD
patients, and similar to those in the asthma cohort. Confirmed
ACO patients had lower mean costs relative to asthma patients
for outpatient and pharmacy services, as well as confirmed
COPD patients for inpatient and outpatient services. Possible
reasons may include greater treatment responsiveness and less
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severe disease versus the COPD cohort, although our study was
not designed to provide any further clarification.

Limitations
Despite the strengths inherent in its design, these study results
must be viewed against important limitations. Data were from
commercially insured patients and results may not be
generalizable more broadly. Almost two-thirds (60.1%) of the
accessed medical records were excluded primarily because
spirometry results or provider FEV1/FVC values were missing.
Missing data also constrained ACO identification in the
claims-positive ACO population.

Comparisons With Prior Studies
The 6% prevalence estimate of ACO in the study population
was lower than in earlier studies, which ranged from 12% to
55% [8,10,12,13,16] but was consistent with the 5.5% estimate
from the Majorca Real-Life Investigation in COPD and Asthma
study [14], and in line with the 4% to 12% estimates of other
recent studies [9,11]. These discrepancies between our study
and prior studies might be attributed, in part, to the quantity and
quality of available medical records. Only 40% of medical
records accessed were complete and usable in confirming the
ACO diagnosis and may have provided insufficient information
to confirm 49.9% of claims-positive ACO cases. If this was
accurate, and assuming that all ACO diagnoses were confirmed
by medical record review (100%), under this scenario the

estimated ACO prevalence would be 11%, which is consistent
with a prior observational study [11].

Our findings of a greater comorbidity burden, medication use,
and costs in the claims-positive ACO cohort compared with the
claims-positive asthma and COPD cohorts were consistent with
prior studies [18]. However, the lower costs observed in the
confirmed ACO cohort differed from prior studies that showed
ACO patients with higher resource utilization and costs
[18,33-35]. This suggests a striking method effect upon results
across studies. Costs are critical in public health activities, and
they have important implications for all stakeholders. Like the
Gerhardsson de Verdier et al claims-based study, which showed
costs doubling for ACO versus asthma patients, our study
showed an increase (almost 3-fold) for ACO versus asthma
alone at 12-months’ follow-up but were similar for ACO and
COPD patients in that time frame.

Conclusions
ACO and asthma patients had similar demographic profiles,
and ACO and COPD patients had similar comorbidity burdens.
Health care costs for ACO, asthma, and COPD patients were
in the same range, but ACO patients received slightly more
medication versus asthma or COPD patients. Medical record
confirmation of ACO suggested a lower prevalence and other
differences than claims-based identification. Such
methods-based variations should be considered in future studies.
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Related Article:
 
Correction of: http://publichealth.jmir.org/2017/4/e68/
 

(JMIR Public Health Surveill 2018;4(3):e11888)   doi:10.2196/11888

The authors of “The Association Between Commonly
Investigated User Factors and Various Types of eHealth Use
for Self-Care of Type 2 Diabetes: Case of First-Generation
Immigrants From Pakistan in the Oslo Area, Norway” (JMIR
Public Health Surveill 2017;3(4):e68) would like to make
changes to the following areas in the Results section:

1. Table 6
• The label “(h) Keeping track of health information”

should be replaced with “(i) Self-assessment of health”.
• The label “(i) Self-assessment of health” should be

replaced with “(h) Keeping track of health
information”.

• Heading of column “Log odds ratio” should be replaced
with “Estimate”.

2. In the “Association Between User Factors and eHealth Use”
sub-section, in the last paragraph, the second last sentence
is “The health component is negatively related to closed
online communication about T2D with a few acquaintances
(d), and there is an indication of a positive relation between

the health component and the use of Web applications and
mobile apps for active decision making on T2D self-care
by self-assessing of health status (P=.05).” This should be
replaced with: “The health component is negatively related
to closed online communication about T2D with a few
acquaintances (d), and there is an indication of a positive
relation between the health component and the use of Web
applications and mobile apps for active decision making
on T2D self-care by tracking of health information (P=.05).”

The errors were caused by an inadvertent mistake on labeling
results of statistical analysis before drafting the manuscript and
the oversight of the missing label for the result of the Poisson
regression analysis. As the results of both logistic regression
analysis and Poisson regression analysis are presented in the
same table, the label “Estimate” should be used to express the
results in the most appropriate manner.

Although the errors concern changes in results, the changes do
not impact on the conclusion.
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Regarding the missing label for the result of the Poisson
regression analysis, the method is clearly stated in the Methods
section, and thus we consider that the impact of this change is
minor.

The correction will appear in the online version of the paper on
the JMIR website on August 27, 2018, together with the
publication of this correction notice. Because this was made
after submission to PubMed, Pubmed Central, and other full-text
repositories, the corrected article also has been re-submitted to
those repositories.
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Abstract

Background: Robust population size estimates of female sex workers and other key populations in South Africa face multiple
methodological limitations, including inconsistencies in surveillance and programmatic indicators. This has, consequently,
challenged the appropriate allocation of resources and benchmark-setting necessary to an effective HIV response. A 2013-2014
integrated biological and behavioral surveillance (IBBS) survey from South Africa showed alarmingly high HIV prevalence
among female sex workers in South Africa’s three largest cities of Johannesburg (71.8%), Cape Town (39.7%), and eThekwini
(53.5%). The survey also included several multiplier-based population size estimation methods.

Objective: The objective of our study was to present the selected population size estimation methods used in an IBBS survey
and the subsequent participatory process used to estimate the number of female sex workers in three South African cities.

Methods: In 2013-2014, we used respondent-driven sampling to recruit independent samples of female sex workers for IBBS
surveys in Johannesburg, Cape Town, and eThekwini. We embedded multiple multiplier-based population size estimation methods
into the survey, from which investigators calculated weighted estimates and ranges of population size estimates for each city’s
female sex worker population. Following data analysis, investigators consulted civil society stakeholders to present survey results
and size estimates and facilitated stakeholder vetting of individual estimates to arrive at consensus point estimates with upper
and lower plausibility bounds.

Results: In total, 764, 650, and 766 female sex workers participated in the survey in Johannesburg, Cape Town, and eThekwini,
respectively. For size estimation, investigators calculated preliminary point estimates as the median of the multiple estimation
methods embedded in the IBBS survey and presented these to a civil society-convened stakeholder group. Stakeholders vetted
all estimates in light of other data points, including programmatic experience, ensuring inclusion only of plausible point estimates
in median calculation. After vetting, stakeholders adopted three consensus point estimates with plausible ranges: Johannesburg
7697 (5000-10,895); Cape Town 6500 (4579-9000); eThekwini 9323 (4000-10,000).
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Conclusions: Using several population size estimates methods embedded in an IBBS survey and a participatory stakeholder
consensus process, the South Africa Health Monitoring Survey produced female sex worker size estimates representing
approximately 0.48%, 0.49%, and 0.77% of the adult female population in Johannesburg, Cape Town, and eThekwini, respectively.
In data-sparse environments, stakeholder engagement and consensus is critical to vetting of multiple empirically based size
estimates procedures to ensure adoption and utilization of data-informed size estimates for coordinated national and subnational
benchmarking. It also has the potential to increase coherence in national and key population-specific HIV responses and to
decrease the likelihood of duplicative and wasteful resource allocation. We recommend building cooperative and productive
academic-civil society partnerships around estimates and other strategic information dissemination and sharing to facilitate the
incorporation of additional data as it becomes available, as these additional data points may minimize the impact of the known
and unknown biases inherent in any single, investigator-calculated method.

(JMIR Public Health Surveill 2018;4(3):e10188)   doi:10.2196/10188
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Introduction

Female sex workers (FSWs) have long been recognized as a
key population at a high risk for HIV infection [1,2]. In the
context of a generalized HIV epidemic in South Africa,
individual and structural factors such as poverty, stigma,
discrimination, and criminalization of sex work contribute to
FSWs’ vulnerability to HIV and complicate efforts to control
the HIV epidemic in the sex worker population [3]. Although
South Africa still criminalizes sex work, FSW populations are
a visible, mobilized, and economically significant population
across the country, including the major metropolitan areas that
are centers of industrial and trade-based employment, provincial
cities and towns, and rural areas, particularly those traversed
by the country’s well-developed national highway network that
links Atlantic and Indian Ocean port cities to the South African
interior as well as the landlocked countries to South Africa’s
north [4]. FSWs work in diverse settings, including along major
transport routes, at public venues such as urban street corners,
parks, bars, and taverns, as well as in more closed spaces such
as private homes, where they mainly interact with clients using
social media platforms [4].

HIV surveillance data, including population size estimates
(PSEs) on the South African FSW population, are limited.
Studies conducted in the 1990s and 2000s observed that as many
as half of all sampled sex workers were HIV positive, but these
studies did not include PSEs [5,6]; recent South African
initiatives aimed to meet the HIV needs of key populations,
including those sponsored by the US President’s Emergency
Plan for AIDS Relief (PEPFAR) and the Global Fund to Fight
AIDS, Tuberculosis and Malaria (the Global Fund), have
highlighted the need for reliable, methodologically rigorous
PSEs for key populations generally and FSWs in particular. In
2013, fieldwork undertaken by the South African National AIDS
Council (SANAC) and sponsored by the Global Fund estimated
that there were roughly 150,000 FSWs in South Africa or nearly
1% of the adult female population aged 15-49 years [7]. Despite
the explicit inclusion of FSWs in South Africa’s national HIV
strategic plans since at least 2007, prior to 2016, these efforts
had not been informed by rigorously collected surveillance or
survey data to quantify HIV treatment or biomedical prevention
for the FSW population.

In 2013-2014, in partnership with South Africa’s National
Department of Health (NDOH) and SANAC, PEPFAR and the
US Centers for Disease Control and Prevention (CDC)
sponsored a collaboration between the University of California
San Francisco, Anova Health Institute, and the Wits
Reproductive Health and HIV Institute to conduct the South
Africa Health Monitoring Survey (SAHMS), an integrated
biological and behavioral surveillance (IBBS) survey, in South
Africa’s three largest cities of Johannesburg, Cape Town, and
eThekwini. The SAHMS aimed to estimate HIV prevalence
and associated risk, prevention, and health-seeking behaviors
among FSWs as well as to estimate the size of the FSW
population in each of the three metropolitan areas. HIV
prevalence and behavioral results have been reported elsewhere
[2]. Briefly, we estimated that 71.8% (95% CI 56.5-81.2) of
FSWs in Johannesburg, 39.7% (95% CI 30.1-49.8) in Cape
Town, and 53.5% (95% CI 37.5-65.6) in eThekwini were HIV
infected. Among HIV-positive FSWs, only 26.9% in
Johannesburg, 23.6% in Cape Town, and 35.3% in eThekwini
were on antiretroviral treatment.

As there is no “gold standard” for estimating the size of key
populations, we adapted CDC-recommended best practices [8]
by integrating multiple multiplier-based methods of estimating
the size of the FSW population at each site into the IBBS
surveys and by engaging in a participatory process to achieve
stakeholder consensus PSEs. In this paper, we have described
these survey methods, PSE methods and results, and the
consensus process through which FSW stakeholders adopted
PSEs and plausible ranges (PRs) for purposes of strategic
planning, policy making, advocacy, and programming.

Methods

Sample Size and Precision
The SAHMS was a cross-sectional HIV bio-behavioral
surveillance study with a target sample size of 500 FSWs in
each city. We used respondent-driven sampling (RDS) methods
[9-12] that have been subsequently adapted for key populations
HIV surveillance and population size estimation purposes
[13-19]. We have described elsewhere how RDS recruitment
operated in the SAHMS [2]. Briefly, each city’s sample was
recruited independently of the others’. Recruitment of each
sample began with 1-3 seeds identified by stakeholders and
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study staff during pre-IBBS formative assessment; each seed
recruited up to 3 additional FSWs from their social and
professional networks, who recruited up to 3 additional FSWs,
and so on in Markov chains, as shown in Table 1.

The study procedures consisted of a behavioral survey and
biological testing for HIV. All participants who wanted to know
their HIV status were offered rapid HIV testing services (HTS).
Eligible candidates were those who were born biologically
female; aged 16 years or older; had exchanged sex for money
with someone other than a primary partner in the previous 30
days; and had lived, worked, or socialized in the urban area
where they were recruited for the previous 6 months.
Participants provided written informed consent for study
procedures and separate written informed consent for rapid HTS
(per South African guidelines). HIV-positive FSWs were
referred to FSW-competent, nonstigmatizing clinical care.
Survey data collection commenced in July 2013 and concluded
in February 2014.

Laboratory and statistical analyses of biological and behavioral
survey data followed the Strengthening the Reporting of
Observational Studies in Epidemiology RDS guidelines [20],
and the full description of laboratory methods has been provided
in the SAHMS final report [2]. In the next sections, we have
described the background and methodological approach to each
population size estimation method.

Wisdom of the Crowds
The theoretical assumption of “wisdom of the crowds” (WOTC)
asserts that a reasonable estimate of the size of a population
may be derived from aggregating responses from survey
participants [21]. The SAHMS included the following question:
“Approximately how many other women who have sex for
money do you think live in and around [survey city]?” To
improve response reliability, the question was asked twice within
the survey. The final estimate was reached by taking the average
of the two median estimates and ranges.

Unique Object Multiplier
The unique object multiplier is a 2-step method commonly used
in conducting population size estimation of key populations.
The first step involves distributing unique, memorable objects
in advance of the survey throughout the study area to the
members of the population of interest. The objects were
determined through stakeholder consultation in each city. In
eThekwini, lavender-colored bracelets were distributed, while
compact make-up kits were used in Johannesburg and Cape
Town. In each city, study staff and stakeholder volunteers
distributed objects to FSWs throughout the study area a few
weeks prior to survey launch, varying days and times in order
to achieve the largest distribution.

To avoid distribution biases and errors in the first step of this
process, we relied on the advice of individual volunteers and
staff who were familiar with the local FSWs, or who were
themselves local FSWs, to minimize the possibility that
individuals would receive multiple objects or that objects would
be distributed to nonpopulation members. The numbers of
objects distributed at a particular time and geographic area (eg,

street intersection, brothel) were recorded and varied to ensure
that different individuals and subpopulations would be
encountered in each object distribution event. Finally, with each
brief interaction, staff screened women to verify their FSW
status and whether they had previously received the object.

The second step was an item in the survey instrument: “In the
previous 6 months, did you receive an object, like the one I am
showing you now?” with the interviewer holding up an example
of the object distributed. The proportion of survey respondents
who answered “yes” to the question was used to calculate the
RDS-adjusted size estimate for this method. The calculation
used for this method was N=n/p; where “N” is the PSE, “n” the
number of objects distributed in the population, and “p” the
proportion of participants who reported receiving an object in
the survey.

Unique Event Multiplier
The 2-step principles and calculation for the unique event
multiplier are similar to the unique object. In the first step, in
advance of the survey launch in each city, staff and stakeholders
sponsored a memorable launch event, with the theme and name
of the event determined through stakeholder input in each city
and the event publicized through FSW stakeholders and social
networks. Staff and stakeholders counted each woman who
entered the event and screened all women to confirm FSW
status. Each count was recorded; discrepancies between counters
were resolved through discussion until a count deemed to be
reasonable was arrived at by all counters. In the second step,
survey participants were asked if they attended the event, with
the event identified by its name and date. To calculate an
RDS-adjusted PSE, we used the previously mentioned formula
N=n/p: here “n” is the number in attendance at the event and
“p” the proportion of the survey sample who reported having
attended the event.

Service Multiplier
In this 2-step process, staff first obtained de-duplicated counts
of FSWs who utilized any clinical HIV or community-based
service (eg, HIV testing, attendance at an advocacy workshop)
from partnering stakeholder organizations between January 1
and June 16, 2013. In Johannesburg, these were visits to Esselen
Street Clinic, a clinic operated by clinical staff at the Wits
Reproductive Health and HIV Institute, where the visiting
population primarily comprises sex workers; in Cape Town and
eThekwini, these were either having attended a “Creative Space”
advocacy workshop organized by the Sex Worker Education
and Advocacy Taskforce or having received HTS through the
TB/HIV Care Association, who provide mobile testing to FSWs.
In the second step, the survey asked participants whether they
had received the particular service between January 1 and June
16 (with January 1 referenced as “New Year’s Day” and June
16 as “Youth Day,” a South African public holiday and,
therefore, a salient recall endpoint). With the same N=n/p
multiplier formula; here “n” is the number of de-duplicated
FSWs reported by the service provider and “p” is the proportion
of participants who reported receiving services from the given
provider.
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Table 1. Respondent-driven sampling sample size and recruitment statistics for three samples of female sex workers in South Africa.

Mean network sizeTotal wavesWaves to equilibriumSeedsSample sizeSite

20.671775764Johannesburg

16.9829106650Cape Town

11.401663766eThekwini

Calculation of Preliminary Population Size Point
Estimates
Study investigators calculated a point estimate for the FSW
population in each city that was the median of a plausible range
of individual point estimates derived from the sources described
above. Investigators excluded point estimates as implausible in
calculating the median if they were outside of an obvious range
of reasonableness—for example, a preliminary point estimate
could not be less than the survey sample size in each city, or it
would suggest that more than half the adult female population
were engaged in sex work. The investigators adopted the median
of the plausible estimates as the preliminary PSE, with the
largest reasonable point estimate as an upper plausibility bound
and the lowest reasonable point estimate as the lower plausibility
bound.

Modified Delphi Process and Adoption of Consensus
Population Size Estimates
Using this range of estimates, investigators then invited input
on the preliminary PSEs, including their a priori exclusion of
implausible results, from a stakeholder committee following a
consensus process described by colleagues in the San Francisco
Department of Public Health [22] and previously implemented
in Tanzania [23] and Ghana [24]. The study investigators
convened a meeting with stakeholders who were familiar with
the three FSW populations to present the preliminary PSEs and
associated upper and lower plausible bounds. The stakeholder
group included representatives of NDOH, civil society human
rights advocacy and health services organizations represented
on the SANAC, and other academic experts. The PSE and crude
data were distributed to stakeholders in advance of an in-person
stakeholder meeting.

At this meeting, investigators reviewed all the individual PSE
methods outlined above, discussed the variation between and
limitations of each method, and identified their a priori
implausible estimates. Upon achieving consensus on the
plausible range of PSEs, the investigators calculated preliminary
median PSEs and upper and lower plausible bounds. Preliminary
PSEs were also compared with census data from 2011 to
back-calculate the proportion of the adult female population
engaging in sex work in each city to demonstrate where the
estimate lay within a range of reasonableness, including
comparison to other PSE studies and assumptions from other
contexts. In this case, the group considered PSEs derived from
a 2013 national rapid assessment of the sex worker population
commissioned by SANAC and presented by Konstant et al [7]
to assess whether the preliminary median PSEs and PRs were
sensitive to the previous results. (Briefly, the rapid assessment’s
multimethod approach consisted of mapping and enumeration,
interviews with sex workers, focus group consultations with

key informants, and fieldwork counts conducted by stakeholder
fieldworkers. Results were reported as counts and proportions
of the adult female population aged above 15 years.

Finally, the investigators facilitated a stakeholder group
discussion to compare the preliminary median PSEs and
plausibility ranges against stakeholders’ own experiences of
engagement with the FSW population through existing
prevention or treatment programs. This process provided the
opportunity to reconsider any point estimates that investigators
had excluded a priori. At the conclusion of the meeting, the
group was invited to reject, amend and recalculate, or adopt the
preliminary PSEs as consensus PSEs.

Data Analysis
We calculated HIV prevalence and other uni- and bivariable
proportions using the RDS Analysis Tool version 7.1.46 and
the SPSS version 23.0. Each sample’s results were analyzed,
weighted, and reported independently of the others. We
estimated the size of the FSW population in each city following
best practices that recommend multiple methods and “multiple
multipliers” [8] and following a 2-phase data triangulation and
consensus-based process.

Results

Sampling or Recruitment
We recruited 2180 FSWs across the three sites. In Johannesburg,
recruitment began in August 2013 and continued for 25 weeks,
recruiting a total of 764 women through 5 seeds. The Cape
Town site launched in July 2013 and was open for 28 weeks,
with a final sample of 650 through 6 seeds. The eThekwini
study site began recruiting participants in September 2013 and
was operational for 22 weeks, with 766 women included in the
final sample recruited through 3 seeds.

PSEs for each city and the survey counts on which they are
based, for example, the count of participants in the survey who
recalled receiving the unique object, have been listed by
estimation method in Table 2. In Johannesburg, the WOTC
produced the lowest estimate at 3000 FSWs (range 3000-3500)
and was ultimately deemed implausibly low by consensus and
excluded from calculation of the median. The unique object had
the highest estimate at 10,895 FSWs (95% CI 582-25,018). The
unique event produced an estimate of 4500 FSWs (95% CI
272-not applicable). The service multiplier result was deemed
an unreasonably low estimate as it produced an estimate equal
to the survey sample size. Previously published literature has
estimated the Johannesburg FSW population at 10,894 [7].

In Cape Town also, WOTC produced the lowest point estimate
at 1500 FSWs (range 1000-1750) and unique object the highest
at 23,750 FSWs (95% CI 783-59,375). This value was deemed
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outside the range of plausibility by stakeholder consensus and
was excluded from calculation of the median. The unique event
multiplier result was 7500 FSWs (95% CI 1380-37,500). The
two service multiplier results in Cape Town were 4579 FSWs
(95% CI 3153-6869) and 2551 FSWs (95% CI 1708-3585).
Previously published literature has estimated the Cape Town
FSW population at 7351 [7].

In eThekwini, the WOTC estimate was 4000 FSWs (range
3000-5000). The unique object multiplier result was 11,200
FSWs (95% CI 326-34,000). The unique event resulted in an
estimate of 747 FSWs. However, this estimate was judged to
be highly implausible since it was well below the de-duplicated
data provided by service providers and, therefore, excluded
from the final analysis. This is very likely attributable to a
misunderstanding regarding the unique event attendance
question among eThekwini survey participants. The two service
multiplier estimates were 12,840 FSWs (95% CI 7379-33,879)
and 9323 FSWs (95% CI 5255-17,515). Prior literature has
estimated the FSW population in this city at 6145 [7].

The Modified Delphi consensus process meeting with
stakeholders endorsed the investigator recommendations on
preliminary point estimates (median of all estimates), resulting
in the exclusion of unreasonable results from calculating the
median. In Cape Town, WOTC was dismissed as implausible
based on program data and expert opinion. The point estimate
became the median of the remaining estimates, rounded up.
Stakeholders were given the option of accepting the highest and
lowest plausible estimate as the PR; in Cape Town and
eThekwini, they relied on expert opinion to round the upper
boundary down.

Population Size
Table 2 presents preliminary and consensus PSEs and PR results,
including the proportion of the adult female population
represented by the consensus PSEs and PRs. We have included
Konstant et al’s results to demonstrate the sensitivity of the
IBBS-derived consensus PSEs to previous estimates [7].

Table 2. Consensus population size estimates of South African female sex workers (FSWs) in the South Africa Health Monitoring Study 2013-2014.

Plausible results, range (%)Final estimate,

n (%)a
Point estimate, N

(95% CI or range)

Sample proportion, pFSW count, nCity and method

Johannesburg

5000-10,895 (0.31-0.69)7697 (0.48)

3000cN/AN/AbWisdom of the crowds

10,895 (582-25,018)0.1241351Unique object

4500 (272-N/A)0.00627Unique event

765c0.341261Service multiplier

10,894N/AN/ALiterature

Cape Town

4579-9000 (0.35-0.69)6500 (0.49)

1500cN/AN/AWisdom of the crowds

23,750c0.04950Unique object

7500 (1380-37,500)0.0175Unique event

4579 (3153-6869)0.126577Service multiplier 1

2551 (1708-3585)0.156398Service multiplier 2

7351N/AN/ALiterature

eThekwini

4000-10,000 (0.33-0.83)9323 (0.77)

4000 (3000-5000)N/AN/AWisdom of the crowds

11,200 (326-34,000)0.075952Unique object

747c0.08556Unique event

12,840 (7379-33,879)0.05642Service multiplier 1

9323 (5255-17,515)0.062578Service multiplier 2

6145N/AN/ALiterature

a% adult female population.
bN/A: not applicable.
cImplausible estimate not used in the calculation of median preliminary population size estimate.
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Discussion

Principal Results
The SAHMS study, and the PSEs derived from it, fill a critical
strategic information gap by providing conservative yet robust
PSEs of FSWs in South Africa’s three largest cities of
Johannesburg, Cape Town, and eThekwini, producing point
estimates of 7697, 6500, and 9323, respectively.

Strengths
This study is, to our knowledge, the first published study of its
kind for South Africa where the incorporation of stakeholder
consensus into the analysis of IBBS data was an integral
component of the population size estimation methodology.
Indeed, the service multiplier methods could not be implemented
without significant stakeholder engagement, and stakeholder
endorsement of the PSE results as plausible is critical to the
PSEs’ utility. In this case, stakeholder endorsement of these
PSEs was critical to NDOH and SANAC developing, launching,
and costing the National Sex Worker HIV Plan 2016-2019 [25]
as well as setting realistic and data-informed FSW prevention
and treatment targets for South Africa’s HIV/STI National
Strategic Plan 2017-2022 [26]. While these planning processes
were entirely independent of SAHMS data collection or its PSE
processes, stakeholders’ decision that surveillance data and
PSEs were reliable enough to inform strategic planning was
only possible because they were meaningfully and consistently
engaged with the data collection and interpretation process.

Comparison With Prior Work
The estimates derived from our methodology in these cities are
largely consistent with 2013 estimates by Konstant et al, derived
from different methodologies [7]. While stakeholders
acknowledged that the PSEs appeared to be lower than they had
expected (a result also reported by Konstant et al), stakeholders
were persuaded to rely on these results as they were based upon
empirical methodologies that were consistently and transparently
applied to the IBBS PSE data. Thus, these consensus PSEs were
acknowledged by stakeholders to be data informed and usable
for their purposes of programmatic planning and benchmarking.

Limitations
We are aware that the major critique and limitation of the
individual methods we used, as well as the consensus process
through which final PSEs were calculated and adopted, are that
the methods and process are subject to significant and frequently
unmeasurable biases, making it difficult to impossible to assess
PSE accuracy and subjects’ precision to subjective biases. In
fact, we substantially agree and would contend that while greater
accuracy is of course a goal, it is unlikely to be achieved through
a single method with enough rigor to achieve scientific
consensus on bias and accuracy anytime soon. The virtue of the
individual PSE methods and the consensus process described
in this paper lies in their utility to public health planning and
action. Individually, the multiplier methods that we selected for
inclusion in the SAHMS are available, easy to implement,
rigorous enough to be reproducible, and—critically—transparent
in their limitations and are generally easily understood by
stakeholders. Moreover, numbers that do not align with

stakeholder opinion or experience are not likely to be adopted
or utilized, which essentially throws good money after bad.
None of this should be interpreted as our endorsement of
methodological sloppiness or indiscriminate guessing; it is
simply a recognition that lives are at stake and avoidable
infection, illness, and death should be prioritized over
methodological debates in the meantime.

These FSW PSEs are also subject to several methodological
and implementation-related limitations. As discussed previously,
reasonable people may disagree on whether the results are
accurate or precise enough, and we acknowledge that there is
no empirical way to validate consensus point PSEs. Nearly
every step in the process is vulnerable to biases introduced
through both random and human error; as facilitators of the
consensus process, investigators have a duty to be ruthlessly
and transparently skeptical of all results in light of other
available evidence and stakeholder experience so that reversion
to the mean of empirically collected and analyzed data is
privileged over indiscriminate guessing. In particular, we are
aware of the emerging consensus in the scientific community
that Delphi methods such as WOTC have become less necessary
or desirable to be included in multimethods comparisons. We
report it here only because it was a method considered by this
stakeholder group in 2016, and the purpose of this paper is to
describe stakeholder consensus methodology and the results
generated through it, more than to validate or invalidate any
individual PSE methodology. We are aware of the major
empirical limitations of similar Delphi methods; they have been
perhaps less robust than, for example, multiplier methods. We
substantially agree, and there may be enough, more empirical
and robust, methodologies now available that a recommendation
to exclude them in the future would not be unwarranted. This
said, we note that as implemented and analyzed in SAHMS,
WOTC produced the lowest point PSEs compared with the
capture-recapture multiplier methods, considered more
empirically based.

These consensus PSEs are primarily informed by point estimates
from the more empirically satisfying and theoretically
reproducible multiplier methods, yet we caution that even these
point estimates must be understood and qualified as being
subject to several biases embedded in these methods. For
example, it is not possible to independently validate that unique
object or event counts include only individuals who are true
population members. Additionally, given the requirement that
multiplier counts be independent of survey counts, even the
most rigorous implementation of multiplier and survey methods
cannot guarantee plausible results as demonstrated by Cape
Town’s object multiplier. Self-report bias may have been
introduced in multiplier methods relying on socially desirable
affirmative answers to questions about, for example, being in
possession of a make-up kit (object) or getting HIV tested in
the last 6 months (service). Additionally we observed relatively
low attendance at each of the three unique events, and in the
case of eThekwini, the number of attendees recaptured through
RDS recruitment produced an implausible result nearly equal
to the site’s achieved sample size (ie, ~100% recapture). For
all these reasons, it is advisable to discuss proposed multiplier
method procedures with the population during presurvey
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assessments such as phrasing of recapture survey questions to
avoid misunderstandings and biased responses. Furthermore, it
is important to monitor and document the implementation of
both sides of the capture-recapture methods carefully. In the
absence of these recommendations, it may otherwise not be
possible for investigators or stakeholders to make reasoned,
qualitative judgments about the plausibility of the individual
results or the range of preliminary PSE results.

Additionally, it is debatable as to whether venue-based
nonprobability and quasi-probability methods may provide more
reliable population size data for purposes of estimating unmet
HIV program needs; in particular, Rao et al’s [27] side-by-side
comparison of the advantages and limitations of RDS with
venue-based nonprobability sampling provides critical
perspective on clearly defining a target population, if assessing
unmet service delivery needs for service delivery is among the
intended outcomes or uses of PSE data. We acknowledge the
potential advantages of such methods particularly in
resource-limited settings, especially because strategic
information-gathering resources are finite and increasingly
constrained, but we believe that currently, even in a human
rights-protecting legal environment such as South Africa’s,
stigma and discrimination, as well as sex workers’well-founded
fears of legal jeopardy and human rights violations by law
enforcement (sex work itself remains criminalized), may prevent
some FSWs (and other key populations members) with
substantial unmet needs from being visible at selected, relatively
public hotspots where they might be systematically enumerated.
Similarly, nonservice delivery venues where FSWs are likely
to be enumerated (eg, brothels, the internet) may be more
difficult for investigators to access than for RDS recruitment
to penetrate. The chief advantage of RDS with key
populations—that it relies on network ties within a population
to populate the sample—requires that it be implemented with
substantial baseline knowledge of the population’s
characteristics and needs. Here stakeholder perspectives are
critical to informing investigators’perspectives, and population
members may also properly be considered stakeholders in a
consensus process, even if they are not sitting in a conference
room with service provider and other types of stakeholders,
whose perspectives may inherently be biased toward those who
are countable and have already been reached. In this sense,
failure to demonstrate substantial network transition out of
service provider-related networks suggests either optimal service
coverage of the population (highly improbable in sex
work-criminalized environments) or methods-implementation
limitations that must be identified and acknowledged in analysis.

Successive sampling (SS)-PSEs are possible to calculate from
RDS data [28] and, on their face, may appear more

methodologically and empirically satisfying. We did not include
SS-PSEs here only because these have not been vetted by this
stakeholder group, and the participatory stakeholder process is
the subject of this paper as much as the estimates it produced.
We endorse SS-PSE’s inclusion in multiple-method comparisons
of future surveillance and population size estimation work in
South Africa and elsewhere. SAHMS II, which will be fielded
in 2018-19, will calculate SS point estimates and present these
for consideration by stakeholders for calculating a mean PSE
and reaching consensus PSEs. SS-PSE accuracy and precision
are dependent on well-monitored field implementation of RDS
and proper post-hoc accounting of bias in RDS recruitment data.
For this reason, we could not recommend reliance on any single
method and continue to endorse vetting and triangulation of
multiple empirical methodologies by stakeholders and technical
experts in a participatory process.

Lessons Learned
At the end of the day, a PSE has no inherent value unless it is
adopted and used consistently by all stakeholders in government,
civil society, and Global Health financing partners. Investigators
cannot hope to achieve anything like accuracy without the
granular knowledge that local stakeholders possess regarding
FSWs and similarly stigmatized and hidden key populations;
stakeholders cannot make this judgment of a PSE result unless
they judge the method of producing it to be reasonable,
transparent, and competently applied. Ultimately, our method
places great responsibility in the hands of technical advisors
who must navigate advocacy, service provider, and political
interests while privileging empirically derived data in weighing
what is and is not a reasonable result, even when this is
inconvenient. The authors hope to have ably discharged this
duty both in reporting these first consensus-based PSEs for
South African FSWs and in describing the process through
which the consensus was achieved. Because the identification
of a “gold standard” methodology that can consistently produce
a single, accurate result for key populations like FSWs continues
to elude us all, we recommend this approach that incorporates
multiple empirical methods into a “multiple multipliers”
comparison and facilitates participatory data triangulation to
achieve stakeholder consensus PSEs. Presently, HIV strategic
planning efforts in South Africa and throughout the world
involve costing of the proven but expensive biomedical
prevention and treatment technologies that are essential to
achieving real and lasting impact on the high-prevalence,
high-incidence epidemics experienced by FSWs and other key
populations. The experience of South Africa suggests that these
consensus PSEs have provided a necessary and useful baseline
from which to launch an evidence-informed assault to end key
populations’ HIV epidemics.
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Abstract

Background: Despite the availability of free routine immunizations in low- and middle-income countries, many children are
not completely vaccinated, vaccinated late for age, or drop out from the course of the immunization schedule. Without the
technology to model and visualize risk of large datasets, vaccinators and policy makers are unable to identify target groups and
individuals at high risk of dropping out; thus default rates remain high, preventing universal immunization coverage. Predictive
analytics algorithm leverages artificial intelligence and uses statistical modeling, machine learning, and multidimensional data
mining to accurately identify children who are most likely to delay or miss their follow-up immunization visits.

Objective: This study aimed to conduct feasibility testing and validation of a predictive analytics algorithm to identify the
children who are likely to default on subsequent immunization visits for any vaccine included in the routine immunization
schedule.

Methods: The algorithm was developed using 47,554 longitudinal immunization records, which were classified into the training
and validation cohorts. Four machine learning models (random forest; recursive partitioning; support vector machines, SVMs;
and C-forest) were used to generate the algorithm that predicts the likelihood of each child defaulting from the follow-up
immunization visit. The following variables were used in the models as predictors of defaulting: gender of the child, language
spoken at the child’s house, place of residence of the child (town or city), enrollment vaccine, timeliness of vaccination, enrolling
staff (vaccinator or others), date of birth (accurate or estimated), and age group of the child. The models were encapsulated in
the predictive engine, which identified the most appropriate method to use in a given case. Each of the models was assessed in
terms of accuracy, precision (positive predictive value), sensitivity, specificity and negative predictive value, and area under the
curve (AUC).

Results: Out of 11,889 cases in the validation dataset, the random forest model correctly predicted 8994 cases, yielding 94.9%
sensitivity and 54.9% specificity. The C-forest model, SVMs, and recursive partitioning models improved prediction by achieving
352, 376, and 389 correctly predicted cases, respectively, above the predictions made by the random forest model. All models
had a C-statistic of 0.750 or above, whereas the highest statistic (AUC 0.791, 95% CI 0.784-0.798) was observed in the recursive
partitioning algorithm.
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Conclusions: This feasibility study demonstrates that predictive analytics can accurately identify children who are at a higher
risk for defaulting on follow-up immunization visits. Correct identification of potential defaulters opens a window for evidence-based
targeted interventions in resource limited settings to achieve optimal immunization coverage and timeliness.

(JMIR Public Health Surveill 2018;4(3):e63)   doi:10.2196/publichealth.9681

KEYWORDS

machine learning; artificial intelligence; immunizations; dropouts; predictive analytics

Introduction

Despite the availability of free routine immunizations in low-
and middle-income countries (LMICs), many children are not
completely vaccinated, are vaccinated late for age, or drop out
from the course of the immunization schedule. According to
the World Health Organization (WHO) and United Nations
International Children's Emergency Fund (UNICEF)
immunization coverage estimates, the mean dropout rates for
Bacillus Calmette–Guérin (BCG) and the second dose of
measles-containing vaccine are 34.6% (SD 20.4%) in
low-income countries and 28.6% (SD 20.4%) in GAVI-eligible
LMICs [1]. Studies have reported consistent findings in which
the coverage rates of earlier vaccines are significantly higher
than the coverage for vaccines that are administered later on in
the immunization schedule, [2,3] with the highest dropout
occurring between the diphtheria-tetanus-pertussis (DTP3) dose
and the first dose of measles vaccine [2]. A probable explanation
is the relatively long time interval (35.5 weeks) between the
administration of the DTP3 vaccine (14 weeks) and measles
vaccine (9 months), which increases the likelihood of mothers
forgetting about the vaccination appointment or not having the
time to make scheduled visits for immunizations [3].

Despite individual efforts by governments to improve coverage
and reduce dropout rates, vaccinators lack readily available
on-site information tools to target children who are at highest
risk of dropout or late vaccination. To achieve full universal
coverage and improve the timeliness of individual vaccine doses,
low-resource countries can model and visualize the risk on large
datasets, including that at the individual level during
immunization visits, to identify and target children who are at
a high risk of dropping out or delaying the next vaccine dose.

In the era of big data, when the collection of massive amounts
of reliable data has become inexpensive and easy, predictive
analytics is being utilized in a wide variety of settings. The
fields of business, marketing, and finance were among the
earliest adopters of predictive analytics. One well-known
application is credit scoring, a predictive model that analyzes
a particular customer’s information, such as credit history, to
assess the potential risk of lending money to that customer.
Web-based retailers, such as Amazon, also utilize powerful
predictive algorithms to tailor item recommendations for the
individual experience of their users [4].

Predictive analytics technology uses mathematical and
computational statistical modeling, machine learning, and
multidimensional data mining techniques [5] to accurately
forecast future immunization outcomes based on existing data
and to predict parental adherence to routine childhood

immunization schedules. What makes predictive analytics
powerful and so widely applicable is the fact that the systems
can iteratively learn and improve over time [5] to achieve the
desired quality of predictive performance. These systems use
traditional statistical methods, such as the calculation of the
area under the system’s receiver operating characteristic (ROC)
curve, to measure the system’s predictive performance [6]. It
was not until electronic medical records and big data in health
care became more widely adopted that opportunities for using
predictive analytics in health began to increase [7]. A machine
learning algorithm built to optimize the management of patients
with chronic kidney disease in the United States was able to
identify the most probable data-driven clinical pathway and
predict the upcoming required intervention with an accuracy of
50%-75% [8]. A proof-of-concept study at the Department of
Medicine at Yale University created a random forest model and
“trained” it to predict the in-hospital mortality rate of patients
with sepsis. The model used local data from the hospital, and
it had an area under the curve (AUC) with a 95% CI of 0.86
(range 0.82-0.90), outperforming all traditional analytic models
used as controls with statistically significant results [9]. In
addition to anticipating outcomes based on the population level,
predictive analytics have also been used to forecast individual
outcomes. Researchers at the University of Texas, Houston,
developed three machine learning algorithms to predict
suicidality among individuals with mood disorders based on
their medical and sociodemographic data. All three models had
>50% accuracy in distinguishing someone as an individual who
had attempted to commit suicide from someone who had not
[10].

According to WHO, in 2015 [11], a child born in a low-income
country was 11 times more likely to die before reaching the age
of 5 years than a child born in a high-income country,
highlighting the crucial link between demographic and
socioeconomic factors influencing health outcomes. Our
hypothesis is as follows: a child’s likelihood to miss or not show
up on time for a vaccination visit is correlated with certain
demographic and background characteristics, such as
socioeconomic status, gender, maternal education, ethnicity,
and location. We have leveraged the power of “big data”
collected through a digital immunization registry to develop a
predictive analytics algorithm that tags children who are most
likely to miss their follow-up immunization visits. Through
statistical modeling, we can use immunization and demographic
data to classify whether a child showing up at the immunization
center is at high or low risk of missing subsequent immunization
visits. This research aimed to develop and validate the accuracy
of the predictive analytics algorithm in identifying children who
were likely to default from subsequent immunization visits for
any vaccine included in the routine immunization schedule. We
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also sought to determine which predictive analytics model has
the highest predictive accuracy. Although our research was
based on previous studies about behavioral predictive analytics
models, this will be the first to examine parental adherence to
routine childhood immunization schedules in developing
countries.

Methods

Study Population and Data Source
Vaccination data were abstracted from the Zindagi Mehfooz
Digital Immunization Registry, a mobile phone-based registry
program initially supported by the United Nations Foundation
and currently scaled in Sindh province with support from WHO.
The registry software was developed based on an android
platform, and it has various features, including web interface,
mobile phone-based data access and entry, radio frequency
identification and quick response code-based identification,
interactive short message service (SMS) reminders, electronic
decision support system that guides vaccinators for routine and
catch-up immunizations, and geographic information system
for tracking of vaccinators. The retrospective data subset had
49,439 records from 21 immunization centers in two cities
(Karachi, Sindh and Muzaffargarh, Punjab) collected from May
2012 to April 2016. We excluded a total of 1885 records from
the total dataset; among these, 326 records were excluded based
on invalid dates for age or immunizations and three were not
included because the children had died. Moreover, 1556 were
excluded because they only had measles-2 immunization record,
which is the last recommended immunization dose, and there
were no further follow-up visits.

The cohort of children included in the model had visited the
immunization center for one of the six routine immunization
visits. These children had complete records of the core variables
used in the analysis. During data extraction, transformation,
and cleaning stage, the information on demographic and
vaccine-related variables was obtained as raw data. The variables
for model prediction were used from routinely collected data
on the Expanded Program on Immunization (EPI) for
administering recommended immunizations to children aged
below 2 years. The variables that did not add any contextual
information (child’s name, address, and contact number) were
filtered out, whereas the rest were utilized in the model (Textbox
1). Figure 1 summarizes the main procedures of the study.

Data Analysis or Prediction Objective
Our primary objective was to validate the functionality of the
predictive analytics model through predicting the likelihood of
each child defaulting from subsequent immunization visits for
any vaccine included in the routine immunization schedule.

Modeling
We used support for recursive partitioning, support vector
machines (SVMs), random forests, and C-forest models in the
predictive analytics component. These models were encapsulated
in the predictive engine, which identified the most appropriate
method to use in a given case based on the following standard
measures: accuracy, precision (positive predictive value),
sensitivity, specificity, and negative predictive value.

Recursive Partitioning
Recursive partitioning is a statistical method that creates a binary
decision tree that classifies the classes of the target attribute by
recursively splitting the training data into subsets until a certain
criterion is met. The advantage of recursive partitioning
algorithm is its performance on larger datasets and flexibility
in prioritizing sensitivity and specificity. However, the
disadvantages include overfitting data and the lack of support
for continuous variables. Furthermore, the problem of overfitting
can be resolved with the use of tuning parameters [12].

Support Vector Machines
SVMs are based on a discriminative classification technique
that forms a tree-like graph of learned classification rules. This
model is extremely efficient for binomial target attributes, and
it performs well on datasets with a high number of attributes,
regardless of training data size. This study uses LibSVM
implementation [13,14].

Random Forests
Random forests are an extension of the decision tree model.
The random forest grows several trees against each classification
rule, each providing a classification of a target object. The
decision is made through voting. The benefit of using random
forests is their higher accuracy on larger datasets and their
capability to handle high-dimensional data without the need of
using the dimensionality reduction step. Random forests are
also good at locating outliers and scaling data to reduce error
due to bias. Breiman’s implementation [15,16] of the random
forest has been used in this study.

Textbox 1. List of predictors from the routinely collected immunization data

1. Gender of the child

2. Language spoken at the child’s house

3. Place of residence of the child (town or city)

4. Enrollment vaccine

5. Timeliness of vaccination

6. Enrolling staff (vaccinator or others)

7. Date of birth (accurate or estimated)

8. Age group of the child (<1 month, 1 month, 2 months, 3 months, 4 months, 6 months, 9 months, 1 year, 1.5 years, 2 years, 3 years, and >3 years)
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Figure 1. Procedures of the Study.

C-Forest
C-Forest is based on conditional inference trees, which estimate
a regression relationship by binary recursive partitioning in a
conditional inference framework. C-Forest can work on
multivariate target variables as well, which is not supported by
the recursive partitioning model by default. This study used an
algorithm proposed by Hothorn, Hornik [17].

Parameter Tuning
In this step, the default parameters of the algorithms were tuned
on different values until the most optimal setting, for example,
the values of the parameters that provide the best accuracy for
the model, had been reached. These parameters were different
for each algorithm; for example, in the random forest model,
we discovered that the default value for the number of trees to
grow (50) was insufficient. Thus, we tested different values and
chose 150 as the optimal value. Another example from the
recursive partitioning is complexity parameter in which we
determined the algorithm if the complexity parameter was set
to 0.01; then, a node should had split further only when the
goodness of fit was improved to at least 0.01 due to this split.
We learned that the default value (0.01) was appropriate and
changing it did not improve the results.

For parameter tuning, the training dataset was further split into
two parts: training set and validation set. Classifiers were trained
on training set and tuned upon the test set. Then, the final
accuracy was measured on the validation set in which the

outcome of the target variable was hidden from the classification
algorithm. Although parameter tuning could improve accuracy
(often extremely marginal), this was an optional step.

Evaluation
For evaluating the algorithm, we carried out bootstrapping to
generate training and validation dataset. To avoid affecting the
performance of the model, the validation dataset was not
included as part of the training set. The validation dataset was
generated as follows:

1. Extracting a sample of size equal to the dataset with
replacement

2. Storing all observations from the dataset for validation,
which were not selected during sampling

3. Repeating the sampling until the size of the validation set
is one-fourth (11,889) of the original dataset size (47,554).

This validation dataset set was neither used during training nor
for parameter tuning. It was only used for model evaluation.
Random sampling with replacement from the original sample
was performed until the training subsample equivalent to the
same size as the original sample was achieved. All the left-over
records, which were not selected in the training set, were placed
together in the validation subsample, as seen in Figure 2. The
test set was separated initially, and no parameter tuning was
performed on this set to ensure the simulation of real-world data
population. These test data were later used to test the accuracy
of the other parameters of each model by predicting the target
class.
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Figure 2. Derivation procedure for extracting training and validation cohort data. ZM: Zindagi Mehfooz.

Accuracy, which is defined as the percentage of total correct
predictions, is considered the first parameter in the evaluation
of any machine learning algorithm: accuracy = (TP + TN) / (TP

+ TN + FP + FN), where TP refers to all correct positive
classifications, TN indicates all correct negative classifications,
FP represents all false positive classifications, and FN refers to
all false negative classifications. The other parameters included
the following: sensitivity = TP / (TP + FN), specificity = TN /
(TN + FP), precision (positive predictive value) = TP / (TP + FP),
and negative predictive value = TN / (TN + FN). The rationale
behind using multiple parameters is that accuracy is not the de
facto model in every case; for example, in the case of predicting
immunization, we might prefer an algorithm with high
sensitivity over another algorithm with higher accuracy.
Furthermore, the overall prediction accuracy of all machine
learning models was measured using the area under the ROC
curve (C-statistic). ROC curve is a plot of true positive rate [TP

/ (TP + FN)] against the false positive rate [FP / (FP + TN)], and
AUC determines the predictive performance of the model.

Results

The baseline characteristics of the children in the test and
validation cohorts are shown in Table 1. Both subsets had similar
characteristics in terms of the selected variables. The mean
enrollment age was 12.9 weeks, and the highest enrollment was
carried out during the BCG vaccination visit. The baseline
demographic characteristics of the participants excluded from
the analysis (n=256) were not significantly different from those
included in the final analysis (N=47,554). Out of 11,889 cases

in the validation dataset, the actual number of children who
defaulted was 6155.

Figure 3 provides a visual illustration of the outcomes of all
models showing the number of true positives, true negatives,
false positives, and false negatives.

According to the four outcomes produced, the recursive
partitioning model predicted that 45.90% (5457/11,889) children
would default; among them, 83.43% (4553/5457) children did
default, which accounts for 83.4% of the total default population.
Likewise, it was predicted that 54.10% (6432/11,889) children
would return for the next vaccination; among them, 75.09%
(4830/6432) children did return. In the support vector machine
model, the total population of children who defaulted was 7310
(7310/11,889, 61.48%); among them, 5473 defaulted, which
accounts for 74.87% (5473/7310) of the total default population.
Likewise, it predicted that 38.51% (4579/11,889) children would
return for vaccination; among them, 85.11% (3897/4579) did
return. Meanwhile, the random forest model predicted that the
total number of children who defaulted will be 70.89%
(8428/11,889); among them, 69.34% (5844/8428) did default.
Likewise, it predicted that 29.11% (3461/11,889) children would
return for vaccination; among them, 91.01% (3150/3461) did
return. Lastly, the C-forest model predicted that 63.34%
(7530/11,889) would default; among them, 73.98% (5571/7530)
did default. Likewise, it predicted that 36.66% (4359/11,889)
children would return for vaccination; among them, 86.20%
(3775/4359) did return. These results produced accuracy rates
of approximately 78.9%, 78.8%, 75.6%, and 78.6% for recursive
partitioning, SVMs, random forests, and C-forest, respectively
(Table 2).
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Table 1. Baseline characteristics of the training and validation data cohorts.

Validation cohort (N=11,889)Training cohort (N=47,554)Characteristics of the participants

12.93 (15.9)12.92 (15.9)Enrollment age (weeks), mean (SD)

5049 (42.47)20,425 (42.95)Gender (female), n (%)

Enrollment vaccine, n (%)

6195 (52.11)24,744 (52.03)BCGa

2236 (18.81)8955 (18.83)Pentavalent-1

3458 (29.08)13,855 (29.14)Others

Language spoken, n (%)

208 (1.75)846 (1.78)Urdu

11,644 (97.94)46,561 (97.91)Unknown

37 (0.31)147 (0.31)Others

Place of residence (town), n (%)

10,296 (86.60)41,225 (86.69)Korangi

445 (3.74)1693 (3.56)Muzafargarh Town

1148 (9.66)4636 (9.75)Others

Place of residence (city), n (%)

11,334 (95.33)45,415 (95.50)Karachi

519 (4.37)1996 (4.20)Muzafargarh

36 (0.30)43 (0.30)Others

Timeliness of vaccinationb, n (%)

BCG

4 (0.07)16 (0.07)Early

4254 (69.61)17,126 (70.19)Late

1852 (30.32)7258 (29.75)Timely

Pentavalent-I

1 (0.02)11 (0.12)Early

2220 (99.78)8892 (99.73)Late

4 (0.18)13 (0.15)Timely

Pentavalent-II

2 (0.20)9 (0.22)Early

996 (99.20)4099 (99.15)Late

6 (0.60)26 (0.63)Timely

Pentavalent-III

3 (0.34)14 (0.38)Early

883 (99.21)4338 (99.31)Late

4 (0.45)11 (0.30)Timely

Measles-I

1 (0.09)6 (0.14)Early

1113 (99.02)4338 (99.20)Late

10 (0.89)29 (0.66)Timely

Age group

1386 (11.66)5465 (11.49)<1 month
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Validation cohort (N=11,889)Training cohort (N=47,554)Characteristics of the participants

8949 (75.27)35,972 (75.64)1-9 months

1554 (13.07)6117 (12.86)>1 year

aBCG: Bacillus Calmette–Guérin.
bExcludes records with invalid dates.

Figure 3. Flow diagram of all the study predictive models.

Table 2. Performance of the study models predicting the likelihood of defaulting from the follow-up immunization visits. Higher C-statistics results
in better algorithm discrimination.

95% CIArea under the curve C-statisticModel

0.784-0.7980.791Recursive partitioning

0.777-0.7920.786Support vector machines

0.742-0.7560.750Random forests

0.775-0.7890.782C-Forest

Overtime, through using artificial intelligence (AI), because
more data are captured, the system will continue to self-learn
from accumulated records, recognizing influential variables,
self-selecting statistical models, and continually upgrading itself
to achieve the highest predictive accuracy. However, the
recursive partitioning model outperforms the rest of he models
in terms of overall accuracy rates, but since the performance of
a classifier does not directly depend on the accuracy rate alone,

therefore, we analyzed other performance metrics, such as
sensitivity, specificity, positive predictive value, and negative
predictive value. Table 3 presents the outcomes for all the
performance metrics.

According to Table 3, the random forest model outperforms all
the other models with a sensitivity rate of 94.9%, although it
has the lowest accuracy rate. The random forest model predicted
that majority of the population will default, that is, it has
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predicted that (70.88% of the whole population, 8428/11,889)
will default. Moreover, it can correctly identify the maximum
number of children who defaulted (5844 out of 8428 children
actually defaulted). The random forest model’s high sensitivity
permits the recognition of almost all children who will not
receive subsequent vaccinations (94.9%). By contrast, the
recursive partitioning model produces the highest specificity at
84.2% and lowest sensitivity at 74.0%, indicating that it can
identify the maximum number of children who will adhere to
their vaccination schedule. The recursive partitioning model
produces moderate results for both sensitivity and specificity
at 74.0% and 84.2%, respectively, and it had the highest
accuracy rate at 78.9%. Figure 4 shows the individual
performance metrics for each model as illustrated in the ROC.

The random forest model correctly predicted 8994 cases,
yielding a sensitivity and specificity of 94.9% and 54.9%,
respectively. The C-forest model, SVMs, and recursive
partitioning models improved the prediction by achieving 352,
376, and 389, additional correct cases, respectively, over the
predictions made using the random forest model. However,
looking across the models, as accuracy of the models increased,
the sensitivity decreased from 94.9% (for random forest model)
to 74.0% (for recursive partitioning model), whereas specificity
went up from 54.9% (for random forest model) to 84.2% (for
recursive partitioning models). All models had a C-statistic of
0.750 or above, and the recursive partitioning model algorithm
had the highest statistic (AUC 0.791, 95% CI 0.784-0.798; Table
2).

Table 3. Performance metrics of all the study predictive models.

Negative predicted value (%)Precision (%)Specificity (%)Sensitivity (%)Accuracy (%)Model

75.183.484.274.078.9Recursive partitioning

85.174.968.088.978.8Support vector machines

91.069.354.994.975.6Random forests

86.674.065.890.578.6C-Forest

Figure 4. Receiver operating characteristic for all the study predictive models.
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Discussion

Principal Findings
We have demonstrated the feasibility and validity of the
predictive analytics algorithm in identifying children who were
likely to default from subsequent immunization visits, and the
algorithm yielded a 79.1% accuracy rate. This information could
empower policy makers, immunization programs, and
vaccinators to reduce dropouts and improve immunization
coverage, timeliness, and equity through the targeted use of
evidenced-based interventions at an individual or community
level. Reduced immunization coverage and losses to follow-up
do not allow communities to fully take advantage of the benefit
of routine childhood immunization programs.

Because the approach is becoming a topic of interest, results
from initial formative studies on the use of predictive analytics
in a variety of settings are now being assessed. Our findings are
in accordance with those reported from other studies that have
used AI technology within the health domain to predict future
outcomes. The success rates of predictions from other studies
are similar; for example, a model conducting risk profiling of
patients who are likely to develop chronic kidney disease using
gradient tree-based algorithm had an AUC statistic of 0.871,
and statistically significant (P<.001) differences were observed
in disease outcomes in the high-, medium-, and low-risk groups
[18]. Similarly, in another study that predicted cardiovascular
risk, the predictions produced by the machine learning algorithm
using a variety of models were better (AUC 0.745, 95% CI
0.739-0.750) than those produced by the existing risk prediction
algorithms [19]. These findings corroborate the potential of
predictive analytics to revolutionize the current practices of
preventing disease and promoting better health care.

This formative study tested the feasibility of an array of
statistical models to make predictions showing the variability
of results depending upon our outcome of interest. The random
forest model had the best performance with results expected to
further improve as more data is collected because the system
learns overtime as a result of machine learning. Other studies
that have used different predictive models also reinforce the
finding that one of the models is typically the highest achieving
model compared with others depending on the outcome of
interest [19]. The selection of variables for the predictive model
was limited to the information collected during routine
immunizations. Machine learning will also proactively interpret
and identify new data patterns in routinely collected data,
significantly improving the accuracy of individual risk
classification over time. However, collecting additional
variables, including household income, ethnicity, maternal
tetanus vaccination status, and maternal and paternal education
status, may further enhance the predictive accuracy.

Operationally, developing countries are in the process of using
digital immunization registries (DIRs), which provide an
extremely rich source of patient information [20], creating an
opportunity for effectively using machine learning and predictive
analytics to identify children who are most likely to default
from their immunization schedule. From a technical standpoint,
predictive analytics has high interoperability, which helps it to

be easily linked to any DIR or electronic health record to
strengthen the health systems and empower the vaccinators.
This feature further enhances the utility of this module given
the high appeal for interoperability to enable cooperative
progress in public health through linking heterogeneous data
[21].

To further enhance the ease of use, the front end of the module
is designed for nonprogrammers, and it does not require
technologically skilled users, making it easy to implement and
sustain in low-resource settings. From an operational
perspective, the utilization of predictive analytics does not
require large investments in resources or trainings. With the
expanding presence of DIRs, the technological platform for
large-scale implementation is already in place, and the user
interface can be tailored to meet local requirements. The
self-learning algorithm quickly adapts to context, adjusting
variables, models, and standard measures as needed.

Financially, the returns to be gained from optimal resource
allocation and reduced expenditure on vaccine-preventable
diseases are substantially greater than the set-up cost, ensuring
a high return on investment per dollar spent. Although a
high-dropout may mean that a large proportion of the population
must be targeted at the start, the offset in the required funding
may be substantial for LMICs. Other clinical studies that used
AI for predicting future outcomes also highlight the reduction
in economic burden through early detection and treatment of
disease [22]. The health department and local government could
ultimately benefit through savings incurred owing to the
allocation of resources to population segments that require them
the most. Wasting of the limited resources of the government
could be reduced if not eliminated. Furthermore, the health
department could make substantial savings in the treatment
costs for vaccine-preventable diseases.

In addition, machine learning techniques have also been proven
to improve resource allocation decisions. For instance, a study
examining patient admission decisions in tertiary care hospitals
has revealed that a machine learning Bayesian model could lead
to more efficient resource allocation decisions when deciding
which patients to admit in the hospital. Similarly, in our context,
predictive analytics can identify children at high risk for
overburdened frontline health workers and as a result,
evidence-based interventions, such as center-based counseling,
out-reach services, and repeated SMS reminders, can be targeted
toward this cohort leading to optimal resource allocation.

Our idea constitutes an unconventional approach for improving
the timeliness of routine immunization and reducing missed
opportunities; in an era where a collection of massive amounts
of reliable data has become cheap and easy, predictive analytics
is considered a cutting-edge innovation with only limited
application in the field of health service delivery despite its
strong impact and potential. Machine learning, particularly deep
learning, is now being used to predict the patients’ chances of
relapse, early deterioration, and developing diseases, such as
cancer and automated diagnosis of eye disease, as recently
shown by Google. However, in the field of immunization,
predictive modeling is a novel idea, and its potential in
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revolutionizing immunization service delivery is yet to be
identified.

To achieve the key goal of the global vaccine action plan
2011-2020, for example, meet the 90% national vaccination
coverage and 80% coverage rate for all vaccines by 2020 in
every district, we need to focus on strategies that reduce
dropouts and expand coverage. As presented in this paper,
predictive analytics can help in the identification of children
who are likely to default or dropout from the course of the
immunization schedule; therefore, communities where
incomplete immunization rates are prevalent will benefit the
most from targeted concentration of efforts promoting the goal
of universal health equity. Although this paper provides a
plausible causal pathway in which the information gained
through this model can lead to health system improvement,
more rigorous evaluations must be conducted to fully determine
the programmatic effectiveness of this model from an
implementation perspective.

Limitations
The limitation of our model was the exclusion of the records
containing invalid dates for age or immunizations. Although
the imputation method was used to deal with invalid or missing
data in the machine learning models because this was a
feasibility study, the data models were utilized only on complete
records. Furthermore, it is relevant to mention that we have

evaluated the predictive analytics algorithm on only one
outcome, particularly the likelihood of a child to default from
subsequent immunization visits. There are other parameters in
which the algorithm could be evaluated, such as the likelihood
of completing the full immunization schedule. However, to keep
the approach simple, other approaches were considered beyond
the scope of this study, and this must be further evaluated. The
predictive analytics will be beneficial for communities with
high access and underutilized services because the model is
based on initial contact with vaccinator or health care worker,
and communities with low access may only benefit indirectly
when herd immunity is achieved. The other limitation of the
study is the generalizability of data to other populations.
Developing this model for other populations would require
recalibration and adjustment to account for other disparities as
well as the inclusion of relevant prediction variables.

Conclusion
The expansion of DIRs in lower- and middle-income countries
is creating a unique opportunity to analyze and interpret data
to generate real-time actionable insight in expanding
immunization services and coverage. This feasibility study
showed that predictive analytics can accurately identify
individual children who are likely to default from subsequent
immunization visits. Predictive analytics can strengthen
immunization programs by facilitating the targeted
implementation of interventions aimed at reducing the dropouts.
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Abstract

Background: More people are searching for immunization information online and potentially being exposed to misinformation
and antivaccination sentiment in content and discussions on social media platforms. As vaccination coverage rates remain
suboptimal in several developed countries, and outbreaks of vaccine-preventable diseases become more prevalent, it is important
that we build on previous research by analyzing themes in online vaccination discussions, including those that individuals may
see without actively searching for information on immunization.

Objective: The study aimed to explore the sentiments and themes behind an unsolicited debate on immunization in order to
better inform public health interventions countering antivaccination sentiment.

Methods: We analyzed and quantified 117 user-driven open-ended comments on immunization posted in the Comments section
of a Facebook advertisement that targeted Canadian parents for recruitment into a larger study on immunization. Then, 2 raters
coded all comments using content analysis.

Results: Of 117 comments, 85 were posted by unique commentators, with most being female (65/85, 77%). The largest proportion
of the immunization comments were positive (51/117, 43.6%), followed by negative (41/117, 35.0%), ambiguous (20/117, 17.1%),
and hesitant (5/117, 4.3%). Inaccurate knowledge (27/130, 20.8%) and misperceptions of risk (23/130, 17.7%) were most prevalent
in the 130 nonpositive comments. Other claims included distrust of pharmaceutical companies or government agencies (18/130,
13.8%), distrust of the health care system or providers (15/130, 11.5%), past negative experiences with vaccination or beliefs
(10/130, 7.7%), and attitudes about health and prevention (10/130, 7.7%). Almost 40% (29/74, 39%) of the positive comments
communicated the risks of not vaccinating, followed by judgments on the knowledge level of nonvaccinators (13/74, 18%). A
total of 10 positive comments (10/74, 14%) specifically refuted the link between autism and vaccination.

Conclusions: The presence of more than 100 unsolicited user-driven comments on a platform not intended for discussion, nor
providing any information on immunization, illustrates the strong sentiments associated with immunization and the arbitrariness
of the online platforms used for immunization debates. Health authorities should be more proactive in finding mechanisms to
refute misinformation and misperceptions that are propagating uncontested online. Online debates and communications on
immunization need to be identified by continuous monitoring in order for health authorities to understand the current themes and
trends, and to engage in the discussion.
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Introduction

The Role of the Internet in Vaccine Hesitancy
The World Health Organization (WHO) and its group of experts
have identified vaccine hesitancy as an important issue facing
immunization programs in the developed world [1]. This has
been evident in Canada and other developed nations such as the
United States and countries in Europe that have reported an
increase in the number of outbreaks of vaccine-preventable
diseases [2-7].

Many factors influence vaccine noncompliance or hesitancy;
however, the role of the internet due to the abundance of online
antivaccination sentiment and activists has been reported as an
important concern [8-13]. A significant association was
established between using the internet to search for vaccine
information and negative parental perception of the risk of
childhood immunizations [14]. More people are searching for
health information online, including information on
immunization [15,16]. Health professionals are concerned that
parents seeking vaccine information online are being exposed
to misinformation and antivaccination sentiment via websites
and online communications on social media platforms
[8,11,12,17]. Over the past decade, social media sites have
gained popularity in Canada, where 67% of Canadian internet
users are using social media on a daily basis [16], with most
users being under the age of 35 years [18]. In Canada, Facebook
is reported as the most popular social media platform, with
usage rates higher than global and US averages [19,20]. Health
information communicated in interactive platforms is of
questionable accuracy, as it is often exchanged without the
participation of health professionals or health organizations
[17,21]. This exchange of misinformation online has the
potential to influence parents’ decision to vaccinate their
children [12,14,22,23] and may be contributing to suboptimal
vaccination coverage among Canadian children [24] and
increases in vaccine-preventable disease rates [25-28]. Results
from the last Childhood National Immunization Coverage
Survey show that 70% of Canadian parents surveyed reported
being concerned about potential side effects of vaccines, and
37% believed that vaccines can cause disease [24]. A recent
study by Dubé et al reported that vaccine experts perceive a
decline in vaccination rates and that vaccine hesitancy is an
important issue to address in Canada [29]. Furthermore,
participants reported that dissemination of negative information
online and lack of knowledge about vaccines were key issues
in the causes of vaccine hesitancy in Canada [29].

Many studies have analyzed content from vaccine-critical
websites and blogs found via search engines, as well as content
posted on participative websites, chat rooms, and social media
platforms such as Twitter, Facebook, YouTube, and Myspace

[30]. These studies have identified similar themes, such as
vaccine safety and effectiveness, alternative medicine, civil
liberties, conspiracy theories, morality and misinformation, and
mistrust of health professionals as the predominant arguments
in the antivaccination movement [10,30,31]. Techniques such
as skewing science, shifting hypotheses, and attacking critics
have been reported as tactics of the online antivaccination
community arguing against vaccination [11]. Themes underlying
vaccine hesitancy can change over time and by place [13,29];
therefore, as coverage rates remain suboptimal in Canada and
outbreaks of vaccine-preventable diseases become more
prevalent, it is critical that we continue to build on previous
research by analyzing themes in online vaccination discussions.
Most research has focused on analyzing the content of
discussions on sites or platforms that individuals would find
via active research on immunization [30]. However, there is a
gap in research in analyzing vaccine information that individuals
may see without actively searching for information and could
influence decisions on vaccination [30]. Ward et al proposed
that future research on vaccine criticism on the internet should
include analysis of more complex and interactive ways of
information circulation, such as posts, likes, links, and retweets
[30]. Furthermore, there is a need for more research to better
understand vaccination sentiments specifically among Canadian
parents.

From December 12, 2013 to January 11, 2014, we posted 6
different Facebook advertisements linked to a Web-based survey
on childhood immunizations to the Facebook News Feeds of
Canadian parents as part of a larger research study [32]. The
advertisements reached over 100,000 Canadian parents who
matched the following inclusion criteria: (1) located in Canada,
(2) 18 years of age or older, (3) parent of a child aged 0 to 15
years, and (4) displaying a profile in French or English. Overall,
women represented the majority of Facebook users reached by
the advertisements and who also clicked on the advertisement
to the Web-based survey [32]. Two advertisements (Figure 1
and Figure 2) had the highest number of views from unique
Facebook users reaching 74,572 users and 38,643 users,
respectively, and the highest click-through rates to our online
survey [32]. Further details on the methods and results of this
recruitment strategy are available [32]. The advertisements did
not provide any information on immunization, did not try to
solicit discussion, and were not posted, shared, liked, or
promoted by the researchers. The advertisements did not provide
any information on immunization, did not try to solicit
discussion, and were not posted, shared, liked, or promoted by
the researchers. The Comments section of the advertisements
was accessible, and this created an unsolicited and spontaneous
discourse where users posted comments on immunization to
the 2 most viewed advertisements (Figures 1 and 2).
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Figure 1. The most popular Facebook advertisement posted to Canadian parents’ News Feeds from December 12, 2013 to January 11, 2014.

Figure 2. The second most popular Facebook advertisement posted to Canadian parents’ News Feeds from December 12, 2013 to January 11, 2014.
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Objective
This study investigated a unique interactive debate on Facebook
resulting from the above Facebook advertisements to recruit
parents in immunization research. Our objective was to
qualitatively analyze and quantify the content of users’ posts
to describe the main vaccination sentiments and themes of an
online immunization debate of Facebook users who commented
on our posted advertisements, in order to better understand the
vaccination debate and to identify underlying themes. We
addressed this by asking 2 questions. First, what are the main
vaccination sentiments (eg, anti- or provaccination) in the online
debate? Second, what are the main themes on vaccination by
type of sentiment? This study will add to the body of research
on online vaccination discussions by analyzing a posting not
intended for interaction that individuals could see without
actively searching for information on immunization. The results
will assist health professionals in understanding some of the
content on vaccine information being shared online in order to
help guide messaging and the development of online
interventions.

Methods

Content Analysis
In this study, we qualitatively analyzed and quantified the
content of open-ended comments posted by Facebook users.
On January 11, 2014, at the end of the 4-week recruitment
period, we captured and saved all user comments posted in the
Comments section of the Facebook advertisements. We included
all comments in French or English that contained any message
on immunization. We excluded any comments that did not
pertain to immunization (eg, comments on the advertisement
itself, “lol”). We did not capture any identifying information
from the Facebook users, and we removed the advertisement
(along with the posted comments) from Facebook immediately
at the end of the recruitment period; thus, no captured comments
can be directly or indirectly linked to any Facebook user.

Data Analysis
After comment capture, 2 raters (JLT and BL) independently
coded the comments on the type of message, the sex of the user,
the main message of the comment, and the claims made in the
comment. To increase validity, the 2 raters independently
categorized the comments and resolved any difference to reach
100% consensus based on discussion and a clear framework
previously established [33-35]. A third rater was available if
consensus was not attainable.

We measured user interaction by the number of “likes” for
specific comments. Commentators either simply made comments
or provided a link to vaccine information online. Thus, we
classified the type of comment as comment only, comment with
link to accurate information or trustworthy source, or comment
with link to inaccurate information or nontrustworthy source.
We classified trustworthy sources as links to government or
reputable associations or scientists. We classified accurate
information as websites with information or statistics from
government sources or peer-reviewed studies. We classified
remaining links as nontrustworthy or inaccurate. We determined

the sex of the commentator by using the user’s name, photo, or
comment and classified sex as not clear if one or both raters
had any uncertainty.

We categorized the main message of the comments as positive,
negative, hesitant, or ambiguous. We coded the comments as
positive if the central message supported vaccination, portraying
it positively (eg, describing the benefits or safety of vaccination,
promoting vaccinations, describing the risks of not vaccinating
or low risk of vaccinating) [36]. We coded comments as negative
if the central message portrayed vaccination negatively (eg,
emphasizing the risk of vaccination, opposing vaccination,
promoting distrust in vaccine science, making allegations of
conspiracy or collusion) [36]. If the central message portrayed
indecision or uncertainty on the risks or benefits of vaccination
(eg, questions or concerns about risk or safety, requests for
information or links, questions regarding others’ decision to
vaccinate), we coded the comments as hesitant. If the main
message was not clear, we coded the comment as ambiguous.
We then used two separate coding schemes to subcategorize
the content: one for the negative, hesitant, and ambiguous
comments and one for the positive comments.

We subcategorized the claims in the negative, hesitant, and
ambiguous comments based on the themes of determinants of
vaccine hesitancy suggested by the WHO’s Strategic Advisory
Group of Experts Working Group (SAGE WG) on Immunization
[37,38]. The SAGE WG matrix organizes vaccine sentiment
into three domains: contextual influences, such as
socioeconomic barriers, mistrust in the pharmaceutical industry,
or religious values; individual and social group influences, such
as personal knowledge or perceptions of risk; and vaccination
and vaccination-specific issues, such as the vaccination schedule
or characteristics of the vaccine; each main theme contains
specific subcategories [37-39]. We categorized claims about
vaccination within the comments according to the major themes
and subthemes; claims could be classified into one or more
themes and subcategories within the themes. We chose the
SAGE WG matrix as the coding framework because it was
developed by experts to include all known and potential
determinants of vaccine hesitancy based on a thorough
systematic review and expert opinion [37,38]. We created a
category of other for any claim not covered by the SAGE WG
matrix as determined by rater consensus [40]. The material was
read several times prior to coding to ensure it fit the
preconceived framework and to identify any other themes.
Definitions of the framework categories were researched and
discussed between the raters prior to coding. Both raters
manually coded and discussed material from a random sample
of respondents prior to independent coding.

The SAGE WG coding framework did not accurately capture
the themes in the positive comments; thus, we categorized the
claims in the positive comments based on broad themes in the
data, with both raters independently generating categories and
reaching consensus to develop the final coding scheme
[33-35,40]. No new codes arose after approximately 40% of the
comments were assessed.

The 2 raters independently categorized all comments (negative
and positive) and claims within the comments, and achieved
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over 95% consensus. The raters met once to discuss items where
consensus was not reached and achieved 100% consensus based
on discussion and preestablished frameworks and criteria
[33-35].

We conducted descriptive statistics to quantify respondent
characteristics, main messages, and identified themes. Raters
conducted content analysis with NVivo 10 qualitative data
analysis software (QSR International) and quantified the analysis
with descriptive statistics using Microsoft Office Excel 2007
(Microsoft Corporation). We obtained ethical approval from
the University of Toronto’s Office of Research Ethics, Toronto,
ON, Canada (REF#29309).

Results

Respondent Characteristics, Main Messages, and User
Interaction
The advertisements generated 117 comments by 85 unique
Facebook users after we excluded 9 comments not meeting the
inclusion criteria. Of the 85 commentators, 77% (65/85) were
female, 14% (12/85) were male, and for 9% (8/85) the sex was
not clear. The majority of the comments were comments only
(103/117, 88.0%), and 11.9% (14/117) posted links to websites.
Of the 14 website links, 2 were from trustworthy sources, with
1 linked to a trustworthy source with accurate information (a
government website with official statistics) and 1 linked to an
online news story with accurate information posted from a
government source. The main message of 43.6% (51/117) of
comments was positive, followed by 35.0% (41/117) negative,
17.1% (20/117) ambiguous, and 4.3% (5/117) hesitant.
Comments with the most interaction (20 or more likes) had
mostly positive main messages (8/9, 89%) and 1 negative. The
following 2 redacted positive comments had the most interaction
(43 and 40 likes, respectively) and highlighted the predominant
theme within the positive comments: the benefits of vaccines
versus the risk for children and others in becoming infected
with the disease (indicated as theme 1 in the comments below).
In addition, the 2 other most identified themes were represented
within these comments: parents who do not vaccinate their
children are uneducated (theme 2), and vaccines do not cause
autism (theme 3). Note that we redacted comments solely for
the purpose of omitting words and sentences inconsequential
to the context and analysis.

Vaccinating your children is the best way to prevent
them (and others) from getting viruses and
diseases...you are essentially protecting them from
the awful signs and symptoms of the disease...the
benefits out way the risks (Theme 1). Why do you
think small pox was eradicated? Bc enough people
around the world got the vaccine for it and it had no
one to spread to, therefore: eradicated!!! There is
NOT as many people unvaccinated as vaccinated,
80% of the population vaccinate their children...that
# is decreasing bc of people’s lack of

knowledge...Your not idiots for vaccinating your
children you are just uneducated about biomedical
facts! (Theme 2)

What about the infants and people who are
immuno-compromised who CANT vaccinate? They
depend on those people who CAN vaccinate to be
protected and not spread these things!! (Theme 1) I
have a child with autism, and do NOT believe
vaccines have ANYTHING to do with it! That has
been disproven! (Theme 3)

Lack of knowledge or awareness was the most prevalent theme
in the negative comments, as suggested by the misinformation
on immunity and transmission of disease contained within the
following most liked (40 likes) negative redacted comment:

If their was a breakout of tuberculosis, polio...the
vaccinated children would not be amune! If a vaccine
protects you & your children, why...are all the
vaccinated children catching it? There is absolutely
no evidence that outbreaks start from unvaccinated
people!...Every time there’s an outbreak there’s as
many vaccinated as unvaccinated people catching
the disease. There is absolutely no protection from a
disease from taking a vaccine!

Themes in the Negative, Hesitant, and Ambiguous
Comments
In the 66 negative, hesitant, or ambiguous comments, 130 claims
were made on factors affecting vaccination decisions. Individual
and social group influence was the predominant theme in the
claims within the posted comments (85/130, 65.4%). Within
this theme, 20.8% (27/130) of the claims displayed lack of
knowledge or awareness on immunization (including
misinformation and the belief in their own research and
knowledge), with the majority (22/27, 81%) providing inaccurate
information or misperceptions on immunization and some
explicitly stating their belief in the credibility or accuracy of
their knowledge and research (5/27, 19%). Approximately 18%
(23/130, 17.7%) of the claims revealed a low perception of the
risk of disease and need for the vaccine or a high perception of
risk of adverse events associated with vaccination. Table 1
displays the identified themes according to the WHO SAGE
WG matrix on vaccine hesitancy.

Themes in the Positive Comments
In the 51 positive comments (and 2 hesitant comments with
positive claims), we identified 74 claims on factors affecting
vaccination decisions. Within these comments, the majority
(29/74, 39%) of the positive claims stated concerns over
nonvaccinating parents putting their children and others at risk
of disease and death or stated how the benefits outweigh the
potential risks, followed by claims that nonvaccinating parents
are uneducated, unintelligent, or selfish (13/74, 18%) (Table
2).
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Table 1. Negative, hesitant, and ambivalent claims posted by Facebook users on Facebook advertisements categorized by themes (n=130).

Examples of claims within commentsn (%)Themes

19 (14.6)Contextual influences

18 (13.8)Mistrust in pharmaceutical industry or
government transparency

• Pharma wanna make money...Bottom line is that vaccination is all about $$$$$...
• The chances of your child dying from these diseases is highly unlikely. There is SO

much gov involvement...

1 (0.8)Religious values • I come from a Mennonite background where we were not vaccinated.

85 (65.4)Individual and group influences

27 (20.8)Lack of knowledge or awareness (mis-
information and belief in own knowl-
edge or research)

• Lmao the courts admitted to vaccines causing autism...But they did it quietly! If I
find the article I will post it on here...I do not vaccinate my children and never
will...liquid mercury is metal you are injecting into your children...

• The argument that an epidemic would break out if children were not vaccinated is
proven incorrect by every Amish/Mennonite community that is thriving today. Recent
studies have shown startling evidence that links autism directly to vaccines along
with decreased brain function. If you would like sources to this I can provide them.

• All sorts of diseases have been directly linked to vaccines including and especially
autism...I hope wise people everywhere choose to educate themselves before making
this decision.

• From my observations, limited as they are, the immunized ones tend to be the ones
lacking basic immunity.

23 (17.7)Risk or benefit of vaccination (per-
ceived, heuristic)

• ...so in my opinion he still would have a chance of getting these illnesses if I vacci-
nated him so I don’t see the point in giving him something that WILL harm him for
a CHANCE that he might not get sick...There are some vaccinations that (my) chil-
dren will not get (like chicken pox) as I think it is an unnecessary risk...

• There is absolutely no protection from a disease from taking a vaccine! But there
are many people who die from vaccines every year!

• Don’t fool yourself. EVERY TIME you vaccinate there is a risk, even of death. It
is up to you to decide if that risk is what is right for your child. For some children
it might be worth it, but for other children it isn’t worth it...There are risks and there
are children that are much better off without vaccines.

15 (11.5)Health system and providers (trust and
personal experience)

• Ask your doctor?! No Doctor is God. They are all trained to say the same thing. The
truth is none of us know the truth.

• Any health care professional will side with pro vaccine idea. I will not vaccinate my
son. Do you even know what your injecting in your kid?

10 (7.7)Beliefs and attitudes about health and
prevention

• My children have needed to see a doc approximately never in their lives. They are
a testament to a holistic lifestyle and natural immunity. My observations of most
kids that have been vaccinated is that they seem to be endlessly ill and have had
multiple courses of antibiotics in their short lives!!

10 (7.7)Experience with past vaccination • My son had convulsions after getting vaccinated, that was 19 years ago and no vac-
cines again.

5 (3.8)Vaccination or vaccination-specific issues

3 (2.3)Role of health care professionals • ...my paediatrician & general practitioner both disagree with vaccinating...

2 (1.5)Vaccination schedule • None of this 3 in 1...Dangerous injecting 2-4 shots in a kid at one time...

21 (16.2)Other

18 (13.8)Parents’ right to choose and not be
judged

• I think every parent has the right to chose what is best for their child. I don’t think
it’s right for other parents or people to judge others for what they decide!!!

• I find it incredibly interesting that so many people are bothered by someone else’s
choice to vaccinate or not vaccinate. If you get vaccinated, who cares if someone
else doesn’t, it’s not your life....Everyone needs to take a chill pill...

• Defend your vaccines all you want but don’t call us idiots for not taking them!

3 (2.3)Requesting information or sources • Do you have any sources for your input?
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Table 2. Positive claims posted by Facebook users on Facebook advertisements categorized by themes (n=74)a,b.

Examples of claims within commentsn (%)Themes

29 (39)Vaccines prevent disease risk or benefit • No vaccine is 100% but those vaccinated can fight the illness more effectively. Herd
immunity only works when we vaccinate. I wonder if some peoples opinions would
change if we lived in a country where vaccination was not common, and these dis-
eases were common...

• Some parents have chosen to opt out and Polio, Whooping Cough and Diptheria are
recurring. This puts us all at risk. The benefits outweigh the risks. We do not want
these diseases to return with a vengeance!

• I personally could not live with myself if my child got very sick or died from a pre-
ventable disease to which we have access to free immunizations for...Now of course
I vaccinated my kids because they can protect them from death...If they were bad...Or
caused autism they would have been out of the market and not given by doctors
don’t you think? I have 4 kids ranging from 18 to ten months. It’s worth the risk
getting vaccinated. I’ve seen what whooping cough and polio do to people. I promise,
those who’ve had polio will probably get their kids vaccinated.

13 (18)Parents who do not vaccinate are uneducat-
ed or unintelligent

• If you’re going to be an idiot and not immunize, at least make sure you’re a well
educated idiot...

• Wow, it never ceases to amaze me how ignorant and just plain dumb some people
are...

• It’s idiots who don’t vaccinate their kids that cause outbreaks...people think that
they know more than the medical community.

• I find people who don’t vaccinate are some of the most uneducated nut jobs...

12 (16)Follow the advice of health care providers
and trustworthy sources

• ...get your information from reputable sites ie health canada or the cdc. Stay away
from those “crunchy granola” opinion- based websites

• Research does not include google off siting an article you found on Facebook. These
people don’t even know the definition of a peer reviewed research paper or study...and
if you can’t tell the difference you should try and trust that the medical professionals
who do know...

• ...everyone should read official statistics and not internet mumbo jumbo. The internet
has so much bs that it can make anyone’s perception a reality...

• Yup our society rallies around a former porn star/actress looking to continue her 15
minutes of fame instead of putting our trust in our medical and science communi-
ty...Sad state of society I’d say!

10 (14)Vaccines do not cause autism • Jenny McCarthy made the Hollywood rounds stating her son got autism from his
vaccines...Since then it has been proven her son doesn’t even have autism nor do
vaccines cause autism...

• I have a child with autism, and do NOT believe vaccines have ANYTHING to do
with it! That has been disproven!

• The jury is not out on autism. The verdict is no link...

10 (14)I am provaccine or vaccinate • Be smart...Vaccinate
• Myself, I am a believer in vaccinations but that’s just what I believe is right for my

kids...

aWe included 2 hesitant comments with positive claims in the analysis.
bTotal percentage does not equal 100% due to rounding.

Discussion

Principal Findings
The majority of comments were clearly pro- (51/117, 43.6%)
or antivaccination (41/117, 35.0%) with few comments
vocalizing vaccine hesitancy (4.3%). Themes in the online
debate followed those identified in the literature and mostly
captured in the SAGE WG framework [30,37]. As reported in
other studies analyzing online vaccination messages [31,37,41],
information in the negative comments was often inaccurate and
the risks of immunization were misperceived. Mistrust in the
pharmaceutical industry, the government, and health system
was also a recurring theme in the online debate and previously

identified as an important theme in studies analyzing
vaccine-critical websites [10,21,30,31]. The right to choose
without being judged was expressed within many negative
comments yet not identified in the SAGE WG framework. This
theme could have emerged in response to several judgments
made within the positive comments on the level of intelligence
or education of nonvaccinators. However, the theme of civil
liberties or parents’ right to choose has been reported in previous
studies analyzing vaccine opposition website content
[10,30,31,41]. Slightly more positive comments were posted
than negative or hesitant, and positive comments received the
most interaction. Although the majority of the positive
comments did not provide any links or obvious information
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from health authorities, there was encouragement to seek out
trusted sources and people. No commentator self-identified as
a health professional. The debate also highlighted the persistence
of the myth linking vaccines to autism. Seeman et al [42] also
reported this persistent inaccuracy on the safety of the
measles-mumps-rubella (MMR) vaccine in an online survey of
Canadian parents, and Nicholson and Leask [21] reported that
one-third of the participants in an online MMR vaccine
discussion forum were critical of the vaccine, with the risk of
adverse effects and autism and concerns with vaccine ingredients
as the major themes. Furthermore, a recent Canadian survey
reported that 28% of adults reported to believe that there is or
be uncertain about a link between vaccines and autism [43].

As we targeted the advertisements at Canadian parents, most
of the commentators likely represented this demographic. Most
of the commentators were female, but we expected this, as the
Facebook campaign biased the advertisement reach toward a
female population [32]. The 2 most popular advertisements
reached over 100,000 Canadian parents on Facebook [32]; thus,
the posted comments would have been visible to other targeted
and potentially vaccine-hesitant Canadian parents who chose
not to respond, as well as an unknown number of individuals
not targeted by the campaign. These online debates should be
of concern to public health authorities, as the spread of
misinformation and misperceptions can reach large audiences
with the potential to negatively influence vaccine-hesitant and
provaccine individuals [22]. In addition, the analysis of the
online debate revealed the lack of knowledge and spread of
misinformation on a platform not intended to solicit discussion.
The presence of public health authorities online is limited to
top-down dissemination of information with limited engagement
in online debates. This lack of public health involvement online
could potentially enable the unabated spread of antivaccination
sentiment and misinformation that potentially affect vaccination
decisions among hesitant and provaccine parents.

Identified themes, such as the perceived risk of adverse events
versus the risk of disease, and misinformation on autism and
other disorders, immunity, and vaccine ingredients, could be
addressed with more communication messages tailored to the
issues in the online discussions. Although some antivaccination
activists may never be swayed by evidence, it is important for
health authorities to provide information to those with genuine
concerns or questions, and engage in online debates rapidly in
a nonjudgmental and transparent manner. Parents’ right to
choose and not be judged was an important theme among the
negative comments. The issue of freedom and individual rights
versus the notion of social good is a fundamental ethical issue
in immunization programs and needs to be given careful thought
in our communications on issues such as mandatory vaccination
and exemption rights. Passive interventions such as increasing
knowledge or reminder recalls have been shown to be the least
effective in addressing vaccine hesitancy [44], and there is a
need for more dialogue-based approaches targeted to specific
subpopulations with an intended focus on social networks [44].
In a recent randomized controlled trial, Glanz et al [45] found
that Web-based information delivered on vaccines via social
media platforms during pregnancy can have a positive impact
on parental vaccine decisions. However, communication

strategies on immunization via social media are still not well
understood, and caution must be used to prevent legitimizing
vaccine hesitancy [46]. Social media can be an important
communication tool for public health; however, the content of
online debates needs to be better monitored to identify the
predominant themes, the type of misinformation, or specific
requests for information, and to understand the determinants
among Canadian parents [46,47]. This study adds to this body
of research and highlights the major themes in one online debate,
as well as the need for ongoing monitoring due to the extent of
misinformation being shared.

Although online monitoring is essential, we need to better
understand who should be engaging online to rebut
misinformation and spread accurate and scientifically valid
information on immunization. Mistrust in health care
professionals and the government has been reported as an
important determinant in vaccine hesitancy [30,37,48,49]; thus,
alternative spokespeople (eg, influential mommy bloggers or
celebrities) may need to be considered in the delivery of
expert-based information. However, a recent survey of Canadian
adults reported that the majority trust physicians and public
health officials for timely and credible vaccine information,
while popular celebrities were the least trusted [43]. Further
research is needed to determine the extent of public health
involvement, and what interventions or messaging and by whom
would have the most impact online. MacDonald et al [50]
reported that no simple strategy exists in overcoming vaccine
hesitancy and that health care workers and immunization
program managers need to “become adept at recognizing and
tackling hesitancy in all of its incarnations.” This includes
detecting vaccine hesitancy in populations and subgroups,
having communication plans to address antivaccination
misinformation, and actively supporting vaccine acceptors [50].
Online silence from public health authorities could give the
impression of agreement with antivaccination information or
sentiment [50]. Adversarial approaches could be
counterproductive [51]; thus, public health departments need
to be proactive in their social media strategies by promoting the
safety of vaccines and addressing misinformation with targeted
and tested interventions and messaging [13,17,50]. As such, it
would also be useful to develop a common matrix that captures
the arguments of those engaging in online discussions to
influence nonvaccinators and vaccine-hesitant individuals (ie,
provaccinators) and to further research their impact.
Furthermore, health authorities and researchers should consider
the ethical implications of nonengagement when using
interactive online platforms for public health communications
and interventions.

Limitations
This study was limited in that the analysis was of one online
debate and not necessarily representative of the main themes in
all online immunization debates. Furthermore, the target
audience was self-selected Canadian parents on an online social
media platform, and we collected the presented data in 2013
and 2014. Thus, the results are not generalizable to a larger
population, and the themes underlying vaccine hesitancy may
have changed for this population, as they can be context specific,
varying across time, place, or vaccine [13,37]. Thus, it is
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imperative that the online conversation be continually monitored
in various subgroups and over time in order to identify current
themes and trends to tailor public health communications on
immunization to specific audiences. Although we did not intend
the advertisement to elicit discussion on vaccines and clearly
requested users to complete an online survey, it is possible that
the advertisement unintentionally provoked discussion by asking
for thoughts on vaccines. The type of messaging used should
be considered when posting online advertisements, and the
Comments section should be deactivated when appropriate and
feasible. It is also important to note that we could have
overestimated the total number of individual commentators (85
unique Facebook users), as it was not possible to verify whether
the same individual had multiple accounts under different user
names.

Conclusion
The presence of over 100 comments posted on advertisements
not intended as a discussion forum illustrates not only the strong

sentiments associated with immunization but also the
arbitrariness of platforms used for online debates. This
unsolicited online debate is evidence of the importance of
monitoring online discussions and of using technology capable
of identifying immunization discussions among Canadian
parents, as interactions are not just limited to vaccine-critical
websites or groups and can occur via several platforms. The
random nature of online debates will present a challenge for
health authorities in terms of monitoring and engagement.
Monitoring will need to include data mining with algorithms
for keywords on immunization to quickly identify and engage
in all public online communications on immunization. Health
authorities need to identify methods to better leverage online
platforms and networks in order to build trust, increase
knowledge and access to information, and contest
misinformation and misperceptions. It would also be important
to consider appropriate jurisdictional responsibilities among
health authorities for online surveillance and communications
in immunization discussions.
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