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Abstract

Background: Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can
be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain
ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data.

Objective: To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify
relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing
and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance,
and investigate how different learning approaches perform under different configurations.

Methods: We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs)
and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised
machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural
network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited
the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision,
recall, and F1-score across the relation types.

Results: Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the
long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score
of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN
models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of
77.35%.

Conclusions: It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants)
for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great
potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs
to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly
available, which will further promote drug safety research in the community.
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Introduction

Background and Significance
Prescription drug safety represents a major public health concern
[1]. An adverse drug event (ADE) is “an injury resulting from
medical intervention related to a drug” [2]. ADEs are common
and occur in approximately 2-5% of hospitalized adult patients
[2-5]. Each ADE is estimated to increase the length of a hospital
stay by more than 2 days and hospital cost by more than US
$3200 [4,6]. Severe ADEs rank among the top 4 or 6 leading
causes of death in the United States [7]. Prevention, early
detection, and mitigation of ADEs could save both lives and
resources [6,8,9].

Due to the limited number of participants and inclusion or
exclusion criteria reflecting specific subject characteristics,
premarketing randomized clinical trials frequently miss ADEs
[1], and thus, postmarketing drug safety surveillance [10] is
vitally important for health care and patient safety. The Food
and Drug Administration (FDA) maintains an adverse event
reporting system called the Food and Drug Administration
Adverse Event Reporting System for postmarketing safety
surveillance, but it faces challenges including underreporting
[11,12] and missing important patterns of drug exposure [13].
Other resources have been shown to be useful for identifying
ADEs, including biomedical literature [14] and social media
[15-18]. However, biomedical literature has been shown to
identify mostly a limited set of rare ADEs [19]. Social media
has its own challenges, such as missing important drug exposure
patterns and generalizing system to deal with data heterogeneity
[17].

It is well known that electronic health records (EHRs) contain
rich ADE information and are an important resource for drug
safety surveillance [2,20,21]. Since 2009, the FDA has invested
in facilitating the use of routinely collected EHR data to perform
active surveillance of the safety of marketed medical products
[22]. Existing ADE-targeted observational studies have focused
on structured EHR data for obtaining ADE information [23-25];
however, ADEs are often buried in the EHR narratives and not
recorded in structured data. Manual abstraction of data from
EHR notes [5,26] remains a costly and significant impediment
to drug safety surveillance research. Exploring natural language
processing (NLP) approaches for efficient, accurate, and
automated ADE detection can provide significant cost and
logistical advantages over manual chart review or voluntary
reporting.

Mining Clinical Narratives for ADE Detection
Quite a few NLP approaches have been explored for mining
ADE information from unstructured data of the aforementioned
sources, such as biomedical literature [27,28], social media [29],
FDA event reporting system narratives [30], and EHRs [31-40].
The 2009 i2b2 (Informatics for Integrating Biology and the
Bedside) medication challenge [41] and the 2010 i2b2 relation

challenge [42] plays an important role to promote methodology
advancement in this field. Existing studies are limited to detect
only on the document level by identifying discharge summaries
that contains ADE [31], or mainly focus on detecting entities
representing relevant events (eg, adverse events and medication
events) [32,33,43], or deal with only intrasentential relations
[42], or identify relations purely based on statistical association
analysis among drug and outcome concepts, which are
recognized by mapping free clinical text onto medical
terminology [37-40]. Henriksson et al [35] explored traditional
random-forest algorithm to identify relations between drugs
and disorders (or findings) on Swedish clinical notes, and
reported that the intersentential relations are challenging and
hard to detect.

Recently, deep learning with neural networks has received
increasing attention in NLP tasks [44,45], and for relation
extraction, the state-of-the-art systems are based on 2 networks:
recurrent neural networks (RNNs) [46,47] and convolutional
neural networks (CNNs) [48], and an end-to-end relation
extraction model [49] obtained competitive performance on
several datasets. So far, there is less related work on evaluating
deep learning methods on ADE relation extraction. Li et al [50]
proposed a bidirectional LSTM to extract ADE relations from
biomedical literature. As the model is dependent on the parsing
of a sentence, it is difficult to apply that on clinical notes which
contain more abbreviations and ungrammatical language
expressions. In clinical domain, Lv et al [51] combined
autoencoder with conditional random fields, and Sahu et al [52]
proposed a domain invariant CNNs for ADE extraction on the
i2b2 data. All the 3 studies are limited to extract relations within
1 sentence.

Objective
In this study, we investigate ADE-relevant relation extraction
on both intra- and intersentential settings. To this end, we have
built a benchmark corpus consisting of clinical notes where
medical concepts related to ADE and their relations were
annotated via a manual chart review. Then, we experimented
with 3 supervised machine learning approaches for ADE relation
identification from clinical notes. The first approach is based
on rule induction, which is similar to supervised descriptive
rule induction [53] but is relatively simple. Rules for each
relation type are automatically induced based on the
corresponding descriptive statistics obtained from the training
data, and then those rules are used to classify new entity pairs.
Our second approach uses a classical support vector machines
(SVM)-based machine learning model. Our third approach is
based on deep learning neural networks, which explore RNNs
with attention mechanisms. In addition to benchmark the overall
performance, we empirically analyzed how well deep learning
models are in terms of recognizing long-distance relations, and
how the training data size affects learning performance on
clinical data. Compared with previous studies, the main
contributions of this work are as follows:
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• We build a new annotated benchmark corpus of EHR notes
for ADE information extraction. Compared with the existing
i2b2 data, this corpus contains much richer annotations
related to ADE research, for example, all the medications
are profiled with attributes enabling ADE connected to a
specific dose of medication (note that many ADEs are
caused by high dosage); severity concepts are also annotated
and associated with ADEs.

• The annotated data in this study will be shared with the
community to further promote research for drug safety
surveillance.

• It is the first attempt to investigate and evaluate modeling
7 heterogeneous clinical relations in a single framework:
relations between medication and its attributes, relations
between ADE and its severity, relations between medication
and ADE, and relations between medication and indication.

• We explored RNNs and attention mechanisms for clinical
relation extraction beyond sentence boundaries, and
investigate how the length between two entities affects the
performance for different learning models. To our
knowledge, this is the first study of applying deep learning
approaches on both inter- and intrasentential relation
extraction using EHR data.

Methods

Data Annotation
The annotated corpus contains 791 English EHR notes from
cancer patients, which were randomly sampled from people
who have been diagnosed with hematological malignancy and
have drug exposure to one or more of the 12 cancer drugs of
interest, including Romidepsin, Rituximab, Brentuximab
vedotin, Ponatib, Carfilzomib. All the notes are longitudinal
and no note type filtering was performed. We manually
annotated 8 named entities and 7 relation types among them:
Dosage-Medication, Route-Medication, Frequency-Medication,
Duration-Medication, Medication-Indication, Medication-ADE,

and Severity-ADE. One named entity that is not involved in
relations is “other signs and symptoms.” Our annotation
guidelines are an extension of the i2b2 annotation guidelines
[42] and have been iteratively developed by domain experts.
Unlike other clinical corpora that annotate entity relations at
the sentence level, we annotated entity relations beyond sentence
boundaries. Each EHR note was annotated by at least 2
annotators, and the interannotator agreement of .93 kappa was
achieved on our annotations.

The resulting annotated data consisted of 667,061 tokens, 48,803
entity mentions (61.7 per note), and 16,022 entity relations (20.3
per note). The relation distributions in these datasets are reported
in the last column of Table 1. Frequency, dosage, and indication
are the most frequent relations, whereas duration and adverse
relations are less frequent in the corpus. We split the corpus
into 602/95/94 train/develop/test sets.

Figure 1 shows the distribution of relation token distance (the
number of tokens between a relation entity mention pair). As
shown in Figure 1, most relations occurred within a window of
up to 9 tokens. On the other hand, some relations connected
entities across multiple sentences. The average relation token
distance was 7, and the maximum distance was 769.

To formulate the relation identification task, our goal was to
learn a function f (x) that mapped an input entity pair (el, er) to
a relation type y ∈ Y, where Y is the set of all possible relation
types including None, which in our system denotes the existence
of no relation between an entity pair. An entity ei ∈ E is any
observed entity mention within a document d ∈ D. The input
entity pair (el, er) is sampled from all possible entity pairs E x
E within the document and is labeled with a relation type if a
true relation holds for it; otherwise, it is labeled None. The
mention pair and the document within which that pair occurs
form a machine learning example x in our task. We implemented
and evaluated 3 supervised machine learning approaches as
described below, and the experiment workflow is shown in
Figure 2.

Table 1. Clinical relation types in our corpus. Entity mentions forming relations are in italics.

#relationsaExampleDescriptionRelation

2643/336/409She receives Albuterol 2 puffs p.o. q4-6hAn attribute of a medication: the amount of the medication
to be taken

Dosage

1908/269/332She receives Albuterol 2 puffs p.o. q4-6hAn attribute of a medication: how the medication is admin-
istered

Route

2691/351/451She receives Albuterol 2 puffs p.o. q4-6hAn attribute of a medication: frequency of the administra-
tion

Frequency

493/95/110The patient was treated with ampicillin for 2 weeksAn attribute of a medicationDuration

2301/264/379He later received chemotherapy for his lung cancerA causal relation between a medication and indication:
why the drug is taken

Indication

717/134/134Patient’s death was due to anaphylactic shock caused by
the intravenously administered penicillin

A causal relation between a medication and an injury: the
consequence of a medication

Adverse
Event

1505/259/241He has severe diarrheaThe attribute of an adverse eventSeverity

athe number of relations for each type (train/develop/test).
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Figure 1. The distribution of relation token distance.

Figure 2. Experimental workflow for adverse drug event (ADE) detection. EHRs: electronic health records; SVM: support vector machines; AE:
adverse events.

Induction Rule Baseline
Our first supervised approach used automatically induced rules
from the training data, motivated by the observation that the
distance between 2 entities was a potentially strong indicator
of their relations. For example, we observed that drug attributes
typically followed drug names and, in contrast, the distance
between adverse drug events and their drugs was relatively far.
Therefore, our rule-induction classifier was based on the token
distance between 2 entities.

Formally, the classifier considered an entity pair (el, er) that
occurred within a certain distance as a true relation, and the pair
was assigned one of the positive relation types, . For training,
we calculated the average token distance of the entity pairs for
each relation type. We then defined 7 different token distance
bins by using these average distances and assigning a single
positive relation label to each bin. During prediction, we chose
one of the relation labels if the token distance of 2 entities fell
in the corresponding bin. For example, if the average token
distance for Severity relations was 3 and for Frequency was 7,
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we then had 2 bins, { n | 0 < n ≤ 3} and { n | 3 < n ≤ 7} (n was
the token distance). If the token distance n between an entity
pair was in the first bin, the entity pair was given the label
Severity; otherwise, it was labeled Frequency or None. We
considered an entity pair as None relation if their token distance
did not belong to any one of the predefined bins.

Support Vector Machines System
We identified a set of rich learning features to build a linear
kernel SVM classifier. We chose linear SVM due to its ability
to accommodate a large feature space. The features we explored
are described below.

Document-level features consisted of the frequencies of a
specific entity and entity type in a document.

Relation-specific features were specific to an entity pair being
considered for classification. The features were as follows:

• token distance between the 2 entities
• number of clinical entities between the 2 entities
• n-grams (1, 2, 3-grams) between the 2 entities
• n-grams (1, 2, 3-grams) of surrounding tokens of the 2

entities. The surrounding tokens were within a window size,
which was defined empirically in our experiment.

Entity-level features defined how likely an individual entity
mention was involved in a relation:

• one-hot encoding of the left entity type, el

• one-hot encoding of the right entity type, er

• character n-grams (2, 3-grams) of the named entities.

Semantic features were derived using the MetaMap tool from
National Library of Medicine. Specifically, we mapped entity
mentions and their surrounding context to their UMLS(Unified
Medical Language System) concepts, preferred terms, and
semantic types. We renormalized the concept IDs (identifiers)
to their corresponding semantic type names and included both
shortened and multiword forms of the semantic types in the
feature set. We set the window size of the surrounding context
to 10 in the MetaMap tool.

Word representation features were generated to overcome the
data sparsity challenge. We explored word clustering and word
vector representation features that have been shown to improve
performance for chemical and biomedical named-entity
recognition tasks [54,55]. In particular, we used the Brown
clustering model and Word Vector Classes as word clustering
features and applied raw word embedding as word vector
features.

We trained the Brown cluster model [56] on a large collection
of biomedical text. We then obtained the cluster label prefixes
(ie, the top levels of the cluster hierarchy) with 4, 6, 10, and 20
lengths from the Brown model as features for the context of
each entity mention. We empirically set the context window
size to 10 in this study. To learn broader contextual information,
we also explored recently introduced skip-gram model [57].
The skip-gram model is used to predict the contextual words
given an input token, and this yielded a dense word embedding
for the token that effectively carried its syntactic and semantic
information. We first built a skip-gram model on a large

unlabeled text consisting of the PubMed abstracts and the EHRs
[43], and an additional set of ~2 million PubMed Central full
articles. The word embedding induced by the skip-gram model
were then clustered into 300 different groups by using a
K-means algorithm to obtain cluster labels that we called Word
Vector Classes (WVCs). As with the Brown model features,
we mapped the entity mention context to their WVCs and
included these WVCs in the feature set. We also used the raw
word embedding as word representation features in our model,
which provided a fine-grained latent feature of word semantic
and syntactic information.

The character and word n-grams were converted into
TF-IDF(term frequency-inverse document frequency) weights
based on the training set. We stored the TF-IDF weights and
used them to extract features from the development and test
sets. We did not involve the development and test sets in the
n-gram extraction and the TF-IDF calculation to ensure that
our models and the features were not biased. We did not extract
any sentence-specific features, which allowed us to classify
intra- and intersentential relations jointly with a single SVM
model.

End-to-End Deep Neural Networks
We explored LSTM and attention-based neural network methods
to classify clinical relations in an end-to-end fashion [58]
without feature engineering. The reason behind this choice is
based on reported advantages of RNNs over CNNs in relation
extraction tasks [59,60].

LSTM is a variation of RNN models and was introduced to
solve the gradient vanishing problem [61,62]. It can model
long-term dependencies with its internal memory, and it
achieved notable success with NLP tasks including machine
translation [63], speech recognition [64], and textual entailment
recognition [65]. The LSTM can effectively learn vector
representations for various levels of linguistic units to facilitate
different classification tasks. The attention mechanism can help
LSTM construct a better representation by selecting important
context in an EHR document. As it is computationally expensive
to use the whole document for learning the representations, we
focused on text windows associated with the 2 entities in our
model.

Let xt, ht, and ct be the input, output, and cell state, respectively,
at time step t. Given a window of token representations (ie,
word embeddings) x1,…, xl (xl is the head token for the entity
el and L is the window size), an LSTM with hidden size k
computes a sequence of the outputs h1,…, hl and another
sequence of the cell states c1,…, cl as: σ

it= σ (W1
lstmxt+ W2

lstmht-1+ b1
lstm) (1)

it
'= tanh (W3

lstmxt+ W4
lstmht-1+ b2

lstm) (2)

ft= σ (W5
lstmxt+ W6

lstmht-1+ b3
lstm) (3)

ot= σ (W7
lstmxt+ W8

lstmht-1+ b4
lstm) (4)

ct = ft ⊙ ct-1 + it ⊙ it
’ (5)
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ht = ot ⊙ tanh (ct) (6)

where W1
lstm,…, W8

lstm ∈ Rk×k and b1
lstm,…, b4

lstm ∈ Rk are the
training parameters, and σ and ⊙ denote the element-wise
sigmoid function and the element-wise vector multiplication,
respectively.

As described by the equations, the memory cell ct and hidden
state ht were updated by reading a word token xt at a time. The
memory cell ct then learns to remember the contextual
information that is relevant to the entity mention. This
information is then provided to the hidden state ht by using a
gating mechanism, and the last hidden state hl summarizes all
the relevant information for the sequence. it, ft, and ot are called
gates whose values are defined by the nonlinear combination
of the previous hidden state ht-1 and the current input token xt

and range from 0 to 1. The input gate it controls how much
information needs to flow into the memory cell, whereas the
forget gate ft decides what information needs to be erased from
the memory cell. The output ot finally produces the hidden state
for the current input token.

We further used the output hl and hr corresponding to the input
token heads of the entity pair el and er as the entity
representations. The representation hr for entity er was obtained
similarly by reading its token window with another LSTM. The
representations hl and hr were then composed by using a function
g (hl, hr) to produce a relation representation rlr. We used a
multilayered perceptron (MLP) with a concatenated input for
g (hl, hr) in our model, defined as:

rlr= g (hl, hr) (7)

g (hl, hr) = tanh (Wmlp[hl; hr] + bmlp) (8)

where [hl; hr] is the concatenation operation, Wmlp ∈ Rk×|Y| is

the projection matrix, and bmlp ∈ R|Y| is the bias vector trained
from the data. Finally, the relation representation rlr was input
to the softmax layer to normalize the probability distribution
over possible relation types Y. The whole network was trained
by a backpropagation algorithm by minimizing the cross-entropy
loss between the predicted probabilities and the correct labels.

We also experimented LSTM with the attention mechanism,
which is expected to solve the issue of the information
bottleneck in RNNs [66]. When RNNs process long text, they
encounter a practical difficulty; they must compress the text
into a single vector with a fixed size. The purpose of the
attention mechanism is to exploit the task-relevant outputs in
the past time scales and the current output vector to dynamically
refine the final vector representation so that the constructed
presentation becomes more informative.

We used a standard global attention, which has shown to be
state-of-the-art in a variety of NLP tasks: machine translation
[66], question answering [67], textual entailment [68], and
constituency parsing [69]. In addition to the last output vectors
hl and hr, the global attention explicitly considered all the

previous output vectors h1,…, hl-1 and h1,…, hr-1 to construct
attention-weighted representations of the entities el and er.

Concretely, let S ∈ Rk×l be a matrix of the output vectors h1,…,

hl and ol ∈ Rl be a vector of ones. An attention weight vector
a, an attention representation z, and the final entity

representation hl
’ were defined as:

M = tanh (W1
atS + W2

athl⊕ ol) (9)

a = softmax (wTM) (10)

z= SaT (11)

hl
’= tanh (W3

atz + W4
athl) (12)

where W1
at, W2

at, W3
at, W4

at ∈ Rk×k are learnable matrices and

wT is the transpose of the learnable vector w ∈ Rk. With the

outer product W2
athl⊕ ol, we repeated the transformed vector

of hll times and then combined the resulting matrix with the

projected output vectors. The entity representation hr
’ for entity

er was obtained similarly. As for the LSTM-based relation
representation, the compositions of the representations were
input to an MLP for relation classification.

We also used the bidirectional version of the aforementioned
models by feeding concatenated outputs of the forward and
backward LSTM. Due to the concatenated outputs, the size of
the W matrices and w vector now become 2 k × 2 k and 2 k,
respectively, increasing the number of parameters to be trained.
We have previously shown that bidirectional LSTM
outperformed the LSTM models for medication and adverse
drug event named-entity recognition tasks in EHRs [43].

Experimental Setup and Evaluation Metrics
As noted previously, we split the corpus into 602/95/94
train/development/test sets. To cast the task as a multiclass
classification problem, we generated None relations (negative
examples) by replacing one of the entity mentions of a true
relation with another entity. In doing so, the only constraint was
that the new relation should not exist in the true relation corpus
set and the rest should be learned from the data. This process
gave us additional negative relation instances of
1,190,328/144,338/202,065 for the train/development/test sets,
respectively. For this SVM model, we carried out a grid search
over its hyperparameters by using the development set for
evaluation. Once the best parameters were found, the final SVM
model was learned using the optimized hyperparameters on
both the training and development sets.

We used ADAM (adaptive moment estimation) [70] for
optimization of the neural models. The size of the LSTM hidden
units was set to 100. An additional layer was used to map word
vectors to the LSTM input. We used a pretrained word2vec
model with a size of 300 [43] for word embedding. All neural
models were regularized by using 20% input and 30% output
dropouts [71] and an l2 regularizer with strength value 1e-3.
The neural models were trained only on the training set. We
used the development set to evaluate them for each epoch to
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choose the best model. The unidirectional models were given
30 epochs and the attentional and bidirectional models were
given 60 epochs to converge to an optimum. The final
performance of the methods was reported and compared by
using the test set.

Our experiment was guided by macro-averaged precision, recall,
and F 1-score in terms of positive relation types. False negative
(FN) and false positives (FP) are incorrect negative and positive
predictions, respectively. True positive (TP) results correspond
to correct positive predictions, which were actually correct
predictions. Recall (r) denotes the percentage of correctly
labeled positive results over all positive cases and is calculated
as: r=TP/(TP+FN). Precision (p) is the percentage of correctly
labeled positive results over all positive-labeled examples and
is calculated as: p=TP/(TP+FP). The F 1-measure is the
harmonic average of precision and recall, and a balanced F
1-score is expressed as: F1=2pr/(p+r).

Results

This section presents the results of implementing our relation
identification systems. We analyzed the performance of each
model and the effects of their free parameters.

The Rule Induction Baseline
For this baseline, the distance bins were defined by using the
training data. If the token distance of an entity pair did not
belong to any of the bins, it was labeled as a None relation. This
baseline achieved an 7.47% overall F1-score on the test set.

Detailed results are shown in Table 2. The performance was
low, as the method was very simple. The Dosage relation type
achieved the highest F1-score (30%) among different relations.

Support Vector Machines–Based Pipeline System
We performed down-sampling for the negative relations (None
relations) with varying keep rates to study how the performance
changed for different distributions of None examples involved
in the training set. The development and test sets were kept the
same.

Table 3 reports the overall F1-score of our SVM model. A
higher keep rate means that we used more negative relations in
the training set, and that the higher keep rate yielded a better
result on the test set in our experiment. We obtained the highest
performance with the keep rate value equal to 80% in our SVM
model. The training set for this run consisted of 1,096,600
instances, of which 964,520 were None relations. In Table 4,
we show the detailed performance metrics for this model for
each relation type when evaluated on the test set. The F1-scores
for most relation types were over 80% with Route relation
achieving the best of 96%, and the recall of our clinical relation
extractor was relatively high. However, the performance of the
Indication and Adverse relations were not as high as those of
the other relations, and Indication showed the worst score of
75%. We observed that 2 entities forming these types of relations
tended to be far away from each other and spanned multiple
sentences (the average token distance was 19 and 14, and the
maximum was 518 and 769). The long distance makes this
relation more difficult to detect than other relations.

Table 2. Results (%) of rule induction classifier on test set.

F1-scoreRecallPrecisionRelation

9794100None

306320Dosage

11317Route

372Frequency

141Duration

2141Indication

1241Adverse

000Severity

7.4720.424.57Overall

Table 3. Overall F1-scores (%) of support vector machines system. Keep rate for negative down-sampling is varied.

TestDevelopmentTrainKeep rate

82.4699.9799.990.1

87.8499.9399.960.3

89.099.8699.940.5

89.1 a99.899.890.8

aBest score on test data are highlighted in italics.
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End-to-End Deep Neural Networks
We also examined the performance of the neural network
models. Notably, by leveraging recent advances in deep learning,
including efficient representation learning and attention
mechanisms, we addressed the problem without any
hand-engineered features.

As stated earlier in the Methods section, we used a free
parameter window size to determine how much local context
is considered for entity representation in neural network models.
We first examined the effect of this parameter by training the
unidirectional LSTM-based model that was the least complex
and the fastest to train and to test. The keep rate for
down-sampling was set to 0.1 and the window sizes 5, 10, 30,
50, and 70 were studied. Table 5 presents the results.

When we considered more context with a larger token window,
the performance of the LSTM-based relation extractor improved.

However, there appeared to be a small drop starting at the point
where size is equal to 50, suggesting that large window size
may introduce contextual noise into the model. In addition, the
training and test time dramatically increased with the large
windows; therefore, we set the window size to 30 in our
experiments, unless specified.

We conducted a similar group of experiments to observe how
the different down-sampling rates affected the model learning.
Again, we used an LSTM-based model to report the results,
because it was the least complex and fastest to train. The results
are presented in Table 6. This time we observed a different
pattern of results. The training error kept decreasing as we
included more negative examples in the training set. However,
with the keep rate of 0.8, it started showing decreasing
performance on the development and the test sets. We used a
down-sampling keep rate of 0.5 throughout the experiment.

Table 4. Results (%) of the best performing support vector machines model on test set. Keep rate=0.8.

F1-scoreRecallPrecisionRelation

100100100None

889185Dosage

969796Route

959793Frequency

919389Duration

757772Indication

858485Adverse

959495Severity

89.190.4287.85Overall

Table 5. Overall F1-score of the long short-term memory (LSTM)–based model. Keep rate=0.1.

TestDevelopmentTrainWindow size

14.5814.0924.055

14.5614.8523.9210

22.59 a21.7737.4030

18.4317.1532.150

15.9315.0427.6270

aBest score on test data are highlighted in italics.

Table 6. Overall F1-score of the long short-term memory (LSTM)–based model. Keep rate for negative down-sampling is varied. Window size=10.

TestDevelopmentTrainKeep rate

14.5614.8523.920.1

37.2135.1838.910.3

39.45 a39.0251.250.5

21.1123.6524.820.8

aBest score on test data are highlighted in italics.
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Table 7. Overall F1-score (%) of long short-term memory (LSTM) and attention-based models. Keep rate=0.5, window size=30.

TestDevelopmentTrainModel

42.3241.4354.47LSTMa

62.7966.4786.56Bidirectional LSTM

54.2152.7168.69LSTM + Attention

65.72 b68.9583.71Bidirectional LSTM + Attention

aLSTM: Long short-term memory.
bBest score on test data are highlighted in italics.

Table 8. Results (%) of the best-performing neural model (Bidirectional long short-term memory [LSTM] + Attention) on test set. Keep rate=0.5,
window size=30.

F1-scoreRecallPrecisionRelation

100100100None

798078Dosage

727867Route

687661Frequency

616954Duration

323232Indication

584678Adverse

849377Severity

65.7267.7163.85Overall

Table 7 shows the performance of variations of the neural
models, including the attention-based and the bidirectional
LSTM-based relation extractors. The attention-based models
always performed better than their corresponding LSTM-based
extractors. Furthermore, the bidirectional networks achieve
much higher performance than the unidirectional ones. The
bidirectional LSTM-based model yielded the highest F-1 training
score. However, without the attention mechanism, this model
appears to be overfitting. The best performance we obtained on
the test set was a 65.72% overall F1-score for positive relation
types, which was lower than the one we reported with SVM
models. Table 8 shows the detailed test performance measures
of the best-performing neural model (bidirectional LSTM +
attention) for each relation type. Most of the relation types had
F-1 scores above 70%, and Severity relation achieved the best
performance of 84%. However, the scores for Indication,
Adverse, and Duration relations were relatively low, with the
Indication score being the lowest of 32%, which is consistent
with SVM models. Nevertheless, the overall result is still
promising, given the fact that no feature engineering was
conducted and that the training set had only hundreds of
examples.

For SVM models, we performed an efficient grid search over
hyper-parameters, and this boosted performance substantially.
However, we were not able to do the same for neural network
models due to their computational complexity. Instead, we were
able to perform a small random search for neural network
parameters.

Discussion

Principal Findings
The bidirectional LSTM model with attention achieved the best
performance among all the RNN variations, and additional
features are shown to help boost the system performance. SVM
model yields the best results, outperforming RNN models, but
RNN models demonstrate great potential of significant
improvement with more annotated data available.

Both the classic feature engineering-based SVM pipeline and
the end-to-end neural network methods have advantages. The
SVM model is able to exploit high-dimensional sparse
representation (ie, TF-IDF), which has traditionally proven to
be efficient in clinical NLP tasks. On the other hand, the neural
model relies on dense low-dimensional representations that can
possibly be constructed in unsupervised fashion from a large
unlabeled text, eluding the complicated feature engineering
efforts.

However, the neural models have a large number of training
parameters that are tuned during training and are able to learn
from a much larger dataset for better performance. For example,
our bidirectional LSTM model has 1.4 million training
parameters, so tuning this parameter set requires a large amount
of data. Unfortunately, it is not trivial to obtain such labeled
data in the clinical and biomedical domains. Our training data
used in the experiments had hundreds of examples per relation
type, which was a very small fraction compared with the
bidirectional LSTM training parameters. In general, this is a
disadvantage of deep learning approaches, and we empirically

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 9http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


validated in our ADE relation identification tasks. In
low-resource domains, such as the medical domain explored in
this study, the focus of future work needs to be on data-efficient
deep learning methods. In addition, the SVM relation extractor
is easy to train and is robust with a small dataset. Training of
the neural network-based relation extractor requires a graphic
processing unit (GPU) and is computationally expensive. For
example, 60 epochs of our attention model took 26 hours to
complete on a GeForce GTX 980 GPU.

Error Analysis
We analyzed how well the SVM and attention models performed
on short- and long-distance relations. Figure 3 plots the test
F1-score of these models against relation distance. The
bidirectional LSTM with attention did not perform well on short
distance relations, and it was not stable. In contrast, SVM was
very stable and performed well for those relations where the
distances between the entities are long. Interestingly, the neural
network performance decreased to 87% from 100% when the
distance was 1100. The performance drop was due to false
positives, and the generated negative examples were classified
as positive by the model. However, these were the simple cases
that even our rule induction classifier was able to easily detect.
Therefore, we hypothesize that the neural network makes this
obvious mistake because the context features, such as relation
representations the model relies on, are not sufficient for the
task. To justify this, we included a set of additional features in
the neural network model. The token and mention distances and
mention type features (in SVM models) were embedded and
further used along with the dense-vector relation representations
for classification.

By including these additional features in the neural model, we
improved its best result from a 65.72% to a 77.35% F1-score.
Table 9 provides a horizontal comparison of the different
methods proposed in this paper. Inclusion of those features in
the neural model yielded an approximately 12% improvement,

and the performance gap between the neural model and SVM
model was also reduced.

We also conducted a set of experiments to show how the training
data size affects the overall performance of the SVM and neural
models. We created new training sets with stratified sampling
rates of 20%, 40%, 60%, and 80% of the original training data.
Both SVM and attention-based bidirectional LSTM models
were trained on the new training sets and evaluated on the test
data. In Figure 4, we display the test F1-scores of the models
for different sample sizes. The SVM model achieved an F1-score
greater than 80% even when trained on 20% of the data, but the
performance of the neural model was only around 62%. This
demonstrates that feature engineering approach may be preferred
over deep learning models when less annotated data are
available, as the hand-crafted features in the SVM model has
encoded human knowledge, such as domain knowledge and
various heuristics.

However, as the training dataset is increased, we can observe
a firm improvement on the performances of the neural models.
When we increased the training sample size from 20% to 80%,
the neural model improved the test performance from ~62% to
~76, by almost 20%, whereas the improvement range for the
SVM model was much smaller, around 8% F1-score. Therefore,
the neural model has the potential to improve substantially if a
larger training dataset is available.

Limitations
One limitation of this study is that the size of the data in the
experiment is relatively small, and more follow-up study is
needed to further verify the findings on a larger dataset or other
publicly available datasets (eg, i2b2 data although they only
contain intrasentential relations) by exploring more RNN or
CNN architectures, which we will investigate in our future work.
In addition, the global attention in our LSTM model may not
be sufficient to pinpoint important local context, especially for
long-distance relations, and it is worth exploring more flexible
attention mechanisms on this task.

Figure 3. Test F1-score over relation distance. BiLSTM: bidirectional long short term memory; SVM: support vector machine.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 10http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Test F1-score over varying training sample size. BiLSTM: bidirectional long short term memory; SVM: support vector machine.

Table 9. Comparison of different models in terms of overall F1-score.

TestDevelopmentTrainModel

7.478.748.33Rule induction classifier

62.7966.4783.71Bidirectional LSTMb

65.7268.9586.56Bidirectional LSTM + Attention

77.3577.7788.14Bidirectional LSTM + Attention + Features

89.1 c90.4287.85SVMa + Features

aLSTM: Long short-term memory
bSVM: support vector machines.
cBest score on test data are highlighted in italics.

Conclusions
In this study, we created a new expert-annotated EHR corpus
in the context of ADE relation identification, which will become
a valuable resource and benchmark in drug safety surveillance
research community. We, then, explored 3 different supervised
machine learning models with different levels of complexity to
identify 7 types of ADE-related clinical relations. Our results
show that the SVM model with a rich feature set achieved the
highest performance, surpassing both the rule induction model
and the RNN models. The bidirectional LSTM model with
attention achieved the best performance among the RNN models,
and the additional features are shown to help boost the system

performance. However, its performance remains substantially
inferior to the performance of the SVM model, although RNN
models demonstrate great potential of significant improvement
with more annotated data available. Our results indicate that a
rich feature set remains crucial for relation identification in
clinical text, especially when the training size is small.

In the future, we will further explore different deep learning
architectures (eg, multikernel CNNs, hierarchical RNNs,
multilevel attentions) on this task for improved performance.
Then, we plan to apply our system to EHRs on a large scale and
derive meaningful insights to facilitate efficient and effective
drug safety surveillance.

Acknowledgments
This work was supported by the grant R01HL125089 from the National Institutes of Health. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not necessarily reflect those of the sponsor.

Conflicts of Interest
None declared.

References

1. Haas JS, Iyer A, Orav EJ, Schiff GD, Bates DW. Participation in an ambulatory e-pharmacovigilance system.
Pharmacoepidemiol Drug Saf 2010 Sep;19(9):961-969. [doi: 10.1002/pds.2006] [Medline: 20623512]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 11http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://dx.doi.org/10.1002/pds.2006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20623512&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, et al. Incidence of adverse drug events and potential
adverse drug events. Implications for prevention. ADE Prevention Study Group. J Am Med Assoc 1995 Jul 05;274(1):29-34.
[Medline: 7791255]

3. Classen D, Pestonik S, Scott ER, Lloyd J, Burke J. Adverse drug events in hospitalized patientsxcess length of stay, extra
costs, and attributable mortality. J Am Med Assoc 1997;277(4):e301-e306. [Medline: 9002492]

4. Bates DW, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, et al. The costs of adverse drug events in hospitalized
patients. Adverse Drug Events Prevention Study Group. J Am Med Assoc 1997;277(4):307-311. [Medline: 9002493]

5. Nebeker JR, Hoffman JM, Weir CR, Bennett CL, Hurdle JF. High rates of adverse drug events in a highly computerized
hospital. Arch Intern Med 2005 May 23;165(10):1111-1116. [doi: 10.1001/archinte.165.10.1111] [Medline: 15911723]

6. Handler SM, Altman RL, Perera S, Hanlon JT, Studenski SA, Bost JE, et al. A systematic review of the performance
characteristics of clinical event monitor signals used to detect adverse drug events in the hospital setting. J Am Med Inform
Assoc 2007 Jul;14(4):451-458 [FREE Full text] [doi: 10.1197/jamia.M2369] [Medline: 17460130]

7. Lazarou J, Pomeranz B, Corey P. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective
studies. J Am Med Assoc 1998;279(15):1200-1205. [Medline: 9555760]

8. Classen D, Pestotnik S, Evans R, Burke J. Description of a computerized adverse drug event monitor using a hospital
information system. Hosp Pharm 1992;27(9):783. [Medline: 10121426]

9. Kaushal R, Jha AK, Franz C, Glaser J, Shetty KD, Jaggi T, Brigham and Women's Hospital CPOE Working Group. Return
on investment for a computerized physician order entry system. J Am Med Inform Assoc 2006 May;13(3):261-266 [FREE
Full text] [doi: 10.1197/jamia.M1984] [Medline: 16501178]

10. World Health Organization (WHO). Pharmacovigilance URL: http://www.who.int/medicines/areas/quality_safety/
safety_efficacy/pharmvigi/en/[WebCite Cache ID 6uhg58vQS]

11. Edlavitch SA. Adverse drug event reporting. Improving the low US reporting rates. Arch Intern Med 1988
Jul;148(7):1499-1503. [Medline: 3382293]

12. Rogers AS, Israel E, Smith CR, Levine D, McBean AM, Valente C, et al. Physician knowledge, attitudes, and behavior
related to reporting adverse drug events. Arch Intern Med 1988 Jul;148(7):1596-1600. [Medline: 3382304]

13. Begaud B, Moride Y, Tubert-Bitter P, Chaslerie A, Haramburu F. False-positives in spontaneous reporting: should we
worry about them? Br J Clin Pharmacol 2012 Jul 05;38(5):401-404. [doi: 10.1111/j.1365-2125.1994.tb04373.x]

14. Xu R, Wang Q. Comparing a knowledge-driven approach to a supervised machine learning approach in large-scale extraction
of drug-side effect relationships from free-text biomedical literature. BMC Bioinformatics 2015;16 Suppl 5:S6 [FREE Full
text] [doi: 10.1186/1471-2105-16-S5-S6] [Medline: 25860223]

15. Butt TF, Cox AR, Oyebode JR, Ferner RE. Internet accounts of serious adverse drug reactions: a study of experiences of
Stevens-Johnson syndrome and toxic epidermal necrolysis. Drug Saf 2012 Dec 01;35(12):1159-1170. [doi:
10.2165/11631950-000000000-00000] [Medline: 23058037]

16. CISION. 2013. Adverse event reporting: What pharmaceutical companies need to know URL: http://www.cision.com/us/
2013/12/adverse-event-reporting-pharma/[WebCite Cache ID 6uhyRoqPe]

17. Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J, Texier N, et al. Adverse drug reaction identification and extraction
in social media: a scoping review. J Med Internet Res 2015 Jul 10;17(7):e171 [FREE Full text] [doi: 10.2196/jmir.4304]
[Medline: 26163365]

18. Abdellaoui R, Schück S, Texier N, Burgun A. Filtering entities to optimize identification of adverse drug reaction from
social media: how can the number of words between entities in the messages help? JMIR Public Health Surveill 2017 Jun
22;3(2):e36 [FREE Full text] [doi: 10.2196/publichealth.6577] [Medline: 28642212]

19. Rossi AC, Knapp DE, Anello C, O'Neill RT, Graham CF, Mendelis PS, et al. Discovery of adverse drug reactions. J Am
Med Assoc 1983 Apr 22;249(16):2226. [doi: 10.1001/jama.1983.03330400072029]

20. Gurwitz J, Field T, Harrold L, Rothschild J, Debellis K, Seger A, et al. Incidence and preventability of adverse drug events
among older persons in the ambulatory setting. J Am Med Assoc 2003;289(9):1107-1116. [Medline: 12622580]

21. FDA. Questions and Answers on FDA's Adverse Event Reporting System (FAERS) URL: http://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm [accessed 2018-03-04] [WebCite
Cache ID 6uhyyje6x]

22. McGraw D, Rosati K, Evans B. A policy framework for public health uses of electronic health data. Pharmacoepidemiol
Drug Saf 2012 Jan;21(Suppl 1):18-22. [doi: 10.1002/pds.2319] [Medline: 22262589]

23. Honigman B, Lee J, Rothschild J, Light P, Pulling R, Yu T, et al. Using computerized data to identify adverse drug events
in outpatients. J Am Med Inform Assoc 2001;8(3):254-266. [Medline: 11320070]

24. Brown JS, Kulldorff M, Petronis KR, Reynolds R, Chan KA, Davis RL, et al. Early adverse drug event signal detection
within population-based health networks using sequential methods: key methodologic considerations. Pharmacoepidemiol
Drug Saf 2009;18(3):226-234. [Medline: 19148879]

25. Liu M, McPeek HE, Matheny ME, Denny JC, Schildcrout JS, Miller RA, et al. Comparative analysis of pharmacovigilance
methods in the detection of adverse drug reactions using electronic medical records. J Am Med Inform Assoc 2013 May
01;20(3):420-426 [FREE Full text] [doi: 10.1136/amiajnl-2012-001119] [Medline: 23161894]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 12http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7791255&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9002492&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9002493&dopt=Abstract
http://dx.doi.org/10.1001/archinte.165.10.1111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15911723&dopt=Abstract
http://europepmc.org/abstract/MED/17460130
http://dx.doi.org/10.1197/jamia.M2369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17460130&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9555760&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10121426&dopt=Abstract
http://europepmc.org/abstract/MED/16501178
http://europepmc.org/abstract/MED/16501178
http://dx.doi.org/10.1197/jamia.M1984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16501178&dopt=Abstract
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/pharmvigi/en/
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/pharmvigi/en/
http://www.webcitation.org/

                                            6uhg58vQS
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3382293&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3382304&dopt=Abstract
http://dx.doi.org/10.1111/j.1365-2125.1994.tb04373.x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-16-S5-S6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-16-S5-S6
http://dx.doi.org/10.1186/1471-2105-16-S5-S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25860223&dopt=Abstract
http://dx.doi.org/10.2165/11631950-000000000-00000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23058037&dopt=Abstract
http://www.cision.com/us/2013/12/adverse-event-reporting-pharma/
http://www.cision.com/us/2013/12/adverse-event-reporting-pharma/
http://www.webcitation.org/

                                            6uhyRoqPe
http://www.jmir.org/2015/7/e171/
http://dx.doi.org/10.2196/jmir.4304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26163365&dopt=Abstract
http://publichealth.jmir.org/2017/2/e36/
http://dx.doi.org/10.2196/publichealth.6577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28642212&dopt=Abstract
http://dx.doi.org/10.1001/jama.1983.03330400072029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12622580&dopt=Abstract
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.webcitation.org/

                                            6uhyyje6x
http://www.webcitation.org/

                                            6uhyyje6x
http://dx.doi.org/10.1002/pds.2319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22262589&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11320070&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19148879&dopt=Abstract
http://europepmc.org/abstract/MED/23161894
http://dx.doi.org/10.1136/amiajnl-2012-001119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23161894&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Hurdle JF, Weir CR, Roth B, Hoffman J, Nebeker JR. Critical gaps in the world's largest electronic medical record: Ad
Hoc nursing narratives and invisible adverse drug events. AMIA Annu Symp Proc 2003:309-312 [FREE Full text] [Medline:
14728184]

27. Gurulingappa H, Mateen-Rajput A, Toldo L. pdfs.semanticscholar. Extraction of potential adverse drug events from medical
case reports URL: https://pdfs.semanticscholar.org/8352/a732f635b6071026d165cb920e6e5d0cc934.pdf [accessed
2018-03-16] [WebCite Cache ID 6xybziLU3]

28. Kang N, Singh B, Bui C, Afzal Z, van Mulligen EM, Kors JA. Knowledge-based extraction of adverse drug events from
biomedical text. BMC Bioinformatics 2014 Mar 04;15:64 [FREE Full text] [doi: 10.1186/1471-2105-15-64] [Medline:
24593054]

29. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards Internet-Age Pharmacovigilancextracting
Adverse Drug Reactions from User Posts to Health-Related Social Networks. In: Proceedings of the 2010 Workshop on
Biomedical Natural Language Processing. 2010 Presented at: BioNLP '10; July 15-15, 2010; Uppsala, Sweden p. 117-125.

30. Polepalli RB, Belknap SM, Li Z, Frid N, West DP, Yu H. Automatically recognizing medication and adverse event
information from food and drug administration's adverse event reporting system narratives. JMIR Med Inform 2014 Jun
27;2(1):e10 [FREE Full text] [doi: 10.2196/medinform.3022] [Medline: 25600332]

31. Visweswaran S, Hanbury P, Saul M, Cooper GF. Detecting adverse drug events in discharge summaries using variations
on the simple Bayes model. AMIA Annu Symp Proc 2003:689-693 [FREE Full text] [Medline: 14728261]

32. Phansalkar S, South BR, Hoffman JM, Hurdle JF. Looking for a needle in the haystack? A case for detecting adverse drug
events (ADE) in clinical notes. AMIA Annu Symp Proc 2007 Oct 11:1077. [Medline: 18694175]

33. Iqbal E, Mallah R, Jackson RG, Ball M, Ibrahim ZM, Broadbent M, et al. Identification of adverse drug events from free
text electronic patient records and information in a large mental health case register. PLoS One 2015 Aug;10(8):e0134208
[FREE Full text] [doi: 10.1371/journal.pone.0134208] [Medline: 26273830]

34. Aramaki E, Miura Y, Tonoike M, Ohkuma T, Masuichi H, Waki K, et al. Extraction of adverse drug effects from clinical
records. Stud Health Technol Inform 2010;160:739-743. [Medline: 20841784]

35. Henriksson A, Kvist M, Dalianis H, Duneld M. Identifying adverse drug event information in clinical notes with distributional
semantic representations of context. J Biomed Inform 2015 Aug 17;57:333-349 [FREE Full text] [doi:
10.1016/j.jbi.2015.08.013] [Medline: 26291578]

36. Casillas A, Pérez A, Oronoz M, Gojenola K, Santiso S. Learning to extract adverse drug reaction events from electronic
health records in Spanish. Expert Syst Appl 2016 Nov;61:235-245. [doi: 10.1016/j.eswa.2016.05.034]

37. Wang G, Jung K, Winnenburg R, Shah NH. A method for systematic discovery of adverse drug events from clinical notes.
J Am Med Inform Assoc 2015 Nov;22(6):1196-1204 [FREE Full text] [doi: 10.1093/jamia/ocv102] [Medline: 26232442]

38. LePendu P, Iyer SV, Bauer-Mehren A, Harpaz R, Mortensen JM, Podchiyska T, et al. Pharmacovigilance using clinical
notes. Clin Pharmacol Ther 2013 Jun;93(6):547-555 [FREE Full text] [doi: 10.1038/clpt.2013.47] [Medline: 23571773]

39. Personeni G, Bresso E, Devignes M, Dumontier M, Smaïl-Tabbone M, Coulet A. Discovering associations between adverse
drug events using pattern structures and ontologies. J Biomed Semantics 2017 Aug 22;8(1):29 [FREE Full text] [doi:
10.1186/s13326-017-0137-x] [Medline: 28830518]

40. Banda J, Evans L, Vanguri R, Tatonetti N, Ryan P, Shah N. A curated and standardized adverse drug event resource to
accelerate drug safety research. Sci Data 2016 Dec 10;3:160026 [FREE Full text] [doi: 10.1038/sdata.2016.26] [Medline:
27193236]

41. Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17(5):514-518
[FREE Full text] [doi: 10.1136/jamia.2010.003947] [Medline: 20819854]

42. Uzuner Ö, South B, Shen S, DuVall S. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am
Med Inform Assoc 2011;18(5):552-556. [doi: 10.1136/amiajnl-2011-000203]

43. Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. Proc Conf 2016
Jun;2016:473-482 [FREE Full text] [Medline: 27885364]

44. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch.
J Mach Learn Res 2011;12:2493-2537.

45. Andor D, Alberti C, Weiss D, Severyn A, Presta A, Ganchev K, et al. Globally Normalized Transition-Based Neural
Networks. 2016 Presented at: the 54th Annual Meeting of the Association for Computational Linguistics; August 7-12;
Berlin, Germany p. 2442-2452.

46. Yan X, Mou L, Li G, Chen Y, Peng H, Jin Z. Classifying Relations via Long Short Term Memory Networks along Shortest
Dependency Path. 2015 Presented at: Conf Empir Methods Nat Lang Process; September 17-21; Lisbon, Portugal p.
1785-1794.

47. Peng N, Poon H, Quirk C, Toutanova K, Yih W. Cs.jhu.edu. 2017. Cross-Sentence N-ary Relation Extraction with Graph
LSTMs URL: https://www.cs.jhu.edu/~npeng/papers/TACL_17_RelationExtraction.pdf [accessed 2018-03-17] [WebCite
Cache ID 6xychvITD]

48. Wang L, Cao Z, Melo GD, Liu Z. Relation Classification via Multi-Level Attention CNNs. 2016 Presented at: the 54th
Annual Meeting of the Association for Computational Linguistics; August 7-12; Berlin, Germany p. 1298-1307.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 13http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://europepmc.org/abstract/MED/14728184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14728184&dopt=Abstract
https://pdfs.semanticscholar.org/8352/a732f635b6071026d165cb920e6e5d0cc934.pdf
http://www.webcitation.org/

                                            6xybziLU3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-64
http://dx.doi.org/10.1186/1471-2105-15-64
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24593054&dopt=Abstract
http://medinform.jmir.org/2014/1/e10/
http://dx.doi.org/10.2196/medinform.3022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25600332&dopt=Abstract
http://europepmc.org/abstract/MED/14728261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14728261&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18694175&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0134208
http://dx.doi.org/10.1371/journal.pone.0134208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26273830&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20841784&dopt=Abstract
http://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00180-X
http://dx.doi.org/10.1016/j.jbi.2015.08.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26291578&dopt=Abstract
http://dx.doi.org/10.1016/j.eswa.2016.05.034
http://europepmc.org/abstract/MED/26232442
http://dx.doi.org/10.1093/jamia/ocv102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26232442&dopt=Abstract
http://europepmc.org/abstract/MED/23571773
http://dx.doi.org/10.1038/clpt.2013.47
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23571773&dopt=Abstract
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-017-0137-x
http://dx.doi.org/10.1186/s13326-017-0137-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28830518&dopt=Abstract
http://europepmc.org/abstract/MED/27193236
http://dx.doi.org/10.1038/sdata.2016.26
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27193236&dopt=Abstract
http://europepmc.org/abstract/MED/20819854
http://dx.doi.org/10.1136/jamia.2010.003947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819854&dopt=Abstract
http://dx.doi.org/10.1136/amiajnl-2011-000203
http://europepmc.org/abstract/MED/27885364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27885364&dopt=Abstract
https://www.cs.jhu.edu/~npeng/papers/TACL_17_RelationExtraction.pdf
http://www.webcitation.org/

                                            6xychvITD
http://www.webcitation.org/

                                            6xychvITD
http://www.w3.org/Style/XSL
http://www.renderx.com/


49. Miwa M, Bansal M. End-to-end Relation Extraction using LSTMs on Sequences and Tree Structures. 2016 Presented at:
Proc ACL; August 7-12; Berlin, Germany.

50. Li F, Zhang M, Fu G, Ji D. A neural joint model for entity and relation extraction from biomedical text. BMC Bioinformatics
2017 Mar 31;18(1):198 [FREE Full text] [doi: 10.1186/s12859-017-1609-9] [Medline: 28359255]

51. Lv X, Guan Y, Yang J, Wu J. Clinical Relation Extraction with Deep Learning. IJHIT 2016 Jul 31;9(7):237-248. [doi:
10.14257/ijhit.2016.9.7.22]

52. Sahu S, Anand A, Oruganty K, Gattu M. arxiv.org. 2016. Relation extraction from clinical texts using domain invariant
convolutional neural network URL: https://arxiv.org/pdf/1606.09370.pdf [accessed 2018-03-17] [WebCite Cache ID
6xycvyTGd]

53. Novak P, Lavrač N, Webb G. Supervised descriptive rule induction. In: Encyclopedia of Machine Learning. Boston, MA:
Springer; 2011.

54. Munkhdalai T, Li M, Batsuren K, Park HA, Choi NH, Ryu KH. Incorporating domain knowledge in chemical and biomedical
named entity recognition with word representations. J Cheminform 2015;7(Suppl 1 Text mining for chemistry and the
CHEMDNER track):S9 [FREE Full text] [doi: 10.1186/1758-2946-7-S1-S9] [Medline: 25810780]

55. Zheng J, Yarzebski J, Ramesh B, Goldberg R, Yu H. Automatically detecting acute myocardial infarction events from EHR
text: a preliminary study. AMIA Annu Symp Proc 2014;2014:1286-1293 [FREE Full text] [Medline: 25954440]

56. Brown PF, Desouza PV, Mercer RL, Pietra VJ, Lai JC. Class-based n-gram models of natural language. Comput Linguist
1992;18(4):479.

57. Mikolov T, Chen K, Corrado G, Dean J. arxiv.org. 2013. Efficient estimation of word representations in vector space URL:
https://arxiv.org/pdf/1301.3781.pdf [accessed 2018-03-17] [WebCite Cache ID 6xydGYKsS]

58. Glasmachers T. proceedings.mlr.press. 2017. Limits of End-to-End Learning URL: http://proceedings.mlr.press/v77/
glasmachers17a/glasmachers17a.pdf [accessed 2018-03-17] [WebCite Cache ID 6xydP34zO]

59. Zhang D, Wang D. Relation Classification: CNN or RNN? In: Natural Language Understanding and Intelligent Applications.
Cham: Springer; 2016:665-675.

60. Zhang D, Wang D. arXiv.org. 2015. Relation Classification via Recurrent Neural Network URL: https://arxiv.org/pdf/1508.
01006.pdf [accessed 2018-03-17] [WebCite Cache ID 6xydY8IOW]

61. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. Neural Netw IEEE
Trans 1994;5(2):157-166. [doi: 10.1109/72.279181]

62. Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain
Fuzziness Knowl-Based Syst 1998;6(2):107. [doi: 10.1142/S0218488598000094]

63. Sutskever I, Vinyals O, Le QV. Sequence to Sequence Learning with Neural Networks. 2014 Presented at: NIPS; December
08 - 13; Montreal, Canada p. 3104-3112.

64. Graves A, Mohamed A, Hinton G. Speech Recognition with Deep Recurrent Neural Networks. 2013 Presented at: IEEE
ICASSP; May 26-31; Vancouver, BC, Canada p. 6645-6649. [doi: 10.1109/ICASSP.2013.6638947]

65. Bowman SR, Angeli G, Potts C, Manning CD. A large annotated corpus for learning natural language inference. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015 Presented at: EMNLP;
September 17-21; Lisbon, Portugal.

66. Boehning D, Cho K, Bengio Y. arxiv.org. 2015. Neural Machine Translation by Jointly Learning to Align and Translate
URL: https://arxiv.org/pdf/1409.0473.pdf [accessed 2018-03-17] [WebCite Cache ID 6xydutE0m]

67. Hermann K, Kočiský T, Grefenstette E, Espeholt L, Kay W, Suleyman M, et al. arXiv.org. 2015. Teaching Machines to
Read and Comprehend URL: https://arxiv.org/pdf/1506.03340.pdf [accessed 2018-03-17] [WebCite Cache ID 6xye7stpJ]

68. Rocktäschel T, Grefenstette E, Hermann K, Kočiský T, Blunsom P. arxiv.org. 2015. Reasoning about Entailment with
Neural Attention URL: https://arxiv.org/pdf/1509.06664.pdf [accessed 2018-03-17] [WebCite Cache ID 6xyeAy6dt]

69. Vinyals O, Kaiser L, Koo T, Petrov S, Sutskever I, Hinton G. Grammar as a Foreign Language. 2015 Presented at: NIPS;
Dec 7-12; Montreal, Canada.

70. Kingma D, Ba J. Adam: a Method for Stochastic Optimization. 2014 Presented at: Int Conf Learn Represent; April 14-16;
Banff, Canada p. 1-13.

71. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. A simple way to prevent neural networks from
overfitting. J Mach Learn Res 2014;15(1):1929-1958.

Abbreviations
ADE: adverse drug event
CNNs: convolutional neural networks
EHR: electronic health record
FDA: Food And Drug Administration
FN: false negative
FP: false positives
GPU: graphic processing unit

JMIR Public Health Surveill 2018 | vol. 4 | iss. 2 | e29 | p. 14http://publichealth.jmir.org/2018/2/e29/
(page number not for citation purposes)

Munkhdalai et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1609-9
http://dx.doi.org/10.1186/s12859-017-1609-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28359255&dopt=Abstract
http://dx.doi.org/10.14257/ijhit.2016.9.7.22
https://arxiv.org/pdf/1606.09370.pdf
http://www.webcitation.org/

                                            6xycvyTGd
http://www.webcitation.org/

                                            6xycvyTGd
https://dx.doi.org/10.1186/1758-2946-7-S1-S9
http://dx.doi.org/10.1186/1758-2946-7-S1-S9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25810780&dopt=Abstract
http://europepmc.org/abstract/MED/25954440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25954440&dopt=Abstract
https://arxiv.org/pdf/1301.3781.pdf
http://www.webcitation.org/

                                            6xydGYKsS
http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf
http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf
http://www.webcitation.org/

                                            6xydP34zO
https://arxiv.org/pdf/1508.01006.pdf
https://arxiv.org/pdf/1508.01006.pdf
http://www.webcitation.org/

                                            6xydY8IOW
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1109/ICASSP.2013.6638947
https://arxiv.org/pdf/1409.0473.pdf
http://www.webcitation.org/

                                            6xydutE0m
https://arxiv.org/pdf/1506.03340.pdf
http://www.webcitation.org/

                                            6xye7stpJ
https://arxiv.org/pdf/1509.06664.pdf
http://www.webcitation.org/

                                            6xyeAy6dt
http://www.w3.org/Style/XSL
http://www.renderx.com/


HER: electronic health record
LSTM: long short-term memory
MLP: multilayered perceptron
NLP: natural language processing
RNN: recurrent neural network
SVM: support vector machines
TP: true positive
WVCs: Word Vector Classes
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