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Abstract

Background: As e-cigarette use rapidly increases in popularity, data from online social systems (Twitter, Instagram, Google
Web Search) can be used to capture and describe the social and environmental context in which individuals use, perceive, and
are marketed this tobacco product. Social media data may serve as a massive focus group where people organically discuss
e-cigarettes unprimed by a researcher, without instrument bias, captured in near real time and at low costs.

Objective: This study documents e-cigarette–related discussions on Twitter, describing themes of conversations and locations
where Twitter users often discuss e-cigarettes, to identify priority areas for e-cigarette education campaigns. Additionally, this
study demonstrates the importance of distinguishing between social bots and human users when attempting to understand public
health–related behaviors and attitudes.

Methods: E-cigarette–related posts on Twitter (N=6,185,153) were collected from December 24, 2016, to April 21, 2017.
Techniques drawn from network science were used to determine discussions of e-cigarettes by describing which hashtags co-occur
(concept clusters) in a Twitter network. Posts and metadata were used to describe where geographically e-cigarette–related
discussions in the United States occurred. Machine learning models were used to distinguish between Twitter posts reflecting
attitudes and behaviors of genuine human users from those of social bots. Odds ratios were computed from 2x2 contingency
tables to detect if hashtags varied by source (social bot vs human user) using the Fisher exact test to determine statistical
significance.

Results: Clusters found in the corpus of hashtags from human users included behaviors (eg, #vaping), vaping identity (eg,
#vapelife), and vaping community (eg, #vapenation). Additional clusters included products (eg, #eliquids), dual tobacco use (eg,
#hookah), and polysubstance use (eg, #marijuana). Clusters found in the corpus of hashtags from social bots included health (eg,
#health), smoking cessation (eg, #quitsmoking), and new products (eg, #ismog). Social bots were significantly more likely to
post hashtags that referenced smoking cessation and new products compared to human users. The volume of tweets was highest
in the Mid-Atlantic (eg, Pennsylvania, New Jersey, Maryland, and New York), followed by the West Coast and Southwest (eg,
California, Arizona and Nevada).

Conclusions: Social media data may be used to complement and extend the surveillance of health behaviors including tobacco
product use. Public health researchers could harness these data and methods to identify new products or devices. Furthermore,
findings from this study demonstrate the importance of distinguishing between Twitter posts from social bots and humans when
attempting to understand attitudes and behaviors. Social bots may be used to perpetuate the idea that e-cigarettes are helpful in
cessation and to promote new products as they enter the marketplace.

(JMIR Public Health Surveill 2017;3(4):e98) doi: 10.2196/publichealth.8641
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Introduction

Electronic cigarettes (e-cigarettes) have climbed in popularity
in the United States and elsewhere [1-6]. As e-cigarette use
(vaping) rapidly becomes more prevalent, data from online
social systems (eg, Google Web Search, Instagram, Twitter,
YouTube) can be used to capture and describe the social and
environmental context in which individuals use, perceive, and
are marketed this tobacco product [7]. These data may serve as
a massive focus group allowing for people to organically discuss
e-cigarettes unprimed by a researcher, without instrument bias,
captured in near real time and at low costs [8].

Internet searches (Google Web Search) for e-cigarette–related
terms increased by 450% from 2010 to 2014 in the United States
with search volume for e-cigarettes greater in coastal areas
(California and New York) in 2010 before becoming more
uniformly searched across the contiguous United States in 2014
[9]. Searches for terms indicative of purchasing e-cigarettes
have outpaced searches indicative of interest in health concerns
or smoking cessation [9]. In a study analyzing e-cigarette–related
posts on Instagram, Chu and colleagues [10] reported that
images often showed “cloud chasing” (ie, large clouds of aerosol
being blown) and “hand checks” (ie, e-cigarette device paired
with specific e-juice bottle all held in one hand), suggesting
these are appealing characteristics of this emerging tobacco
product.

Twitter has been used in tobacco control research with studies
showing how tobacco education campaigns can be informed by
monitoring tweets [11,12] and which e-cigarette–related
messages are likely to spread on Twitter [13], among other
studies [14-21]. Ayers and colleagues [22] recently analyzed a
sample of e-cigarette–related tweets and reported that social
image was the most identified reason for e-cigarette use in 2015.
Other identified reasons for e-cigarette use included quitting
combustible cigarettes and use indoors [22].

In this study, we demonstrate the feasibility of a Twitter-based
infoveillance [7] methodology to document and describe
e-cigarette–related conversations on Twitter. We used social
network analyses to identify discussions of e-cigarettes by
describing which hashtags co-occur in a massive Twitter
network. Twitter users use hashtags (ie, terms prepended by the
hash mark #) to indicate the context, emotions, or subject matter
related to a post. Hashtags serve as a marker for the content of
posts that allows users to search for and see posts of other
Twitter users even if they do not follow them. Multiple hashtags
can be adopted in a single post. When 2 hashtags co-occur in
the same post, one can infer that they are related. Building the
network of co-occurrence of hashtags (ie, hashtag network) will
illustrate concept clusters giving us insights to
e-cigarette–related discussions by individuals in their own
words. This clustering allows us to see underlying dimensions
of meaning that might not otherwise be possible in complex
data.

We also used posts and metadata from Twitter to describe where
geographically e-cigarette–related discussions in the United
States occur to identify priority areas for e-cigarette education
campaigns. Additionally, this study builds on earlier work
[23,24] and demonstrates the importance of removing social
bots (ie, computer algorithms designed to automatically produce
content and engage with legitimate human accounts on Twitter)
from Twitter data when attempting to understand public
health–related behaviors and attitudes. Taken together, findings
from this study should inform tobacco control and demonstrate
the utility in using Twitter data in enhancing surveillance of
health behaviors in general and e-cigarette use.

Methods

Data were obtained by means of Python scripts that continuously
polled Twitter’s streaming application programming interface.
This service provides a sample stream of data based on key
terms and hashtag searches. Tweets were collected between
December 24, 2016, and April 21, 2017. The key terms used to
collect the tweets included e-cigarette, vaping, etc (see
Multimedia Appendix 1 for complete list). The key terms could
have appeared in the post or in an accompanying hashtag (ie,
vaping or #vaping). The university’s institutional review board
approved all procedures.

The terms used to collect tweets during the study period resulted
in an initial corpus of 6,185,153 tweets. However, Twitter has
quickly become subject to third-party manipulation where
computer algorithms designed to automatically produce content
and engage with legitimate human accounts on Twitter (social
bots) are created to influence discussions and promote specific
ideas or products [25]. Social bots are meant to appear as
genuine human users operating Twitter accounts; their profiles
are often complete with metadata (name, location, pithy quote)
and a photo/image. Social bots on average generate more tweets
than the average human user. Therefore, social bots are
producing more content on a topic. Social bots make
indiscriminate references to an array of content while at the
same time perpetuating select conversations, giving the
appearance that a specific topic is more prominent than it is
offline. Their adoption has been documented in a variety of
domains, including political astroturfing [26], stock market
manipulation [27], spread of misinformation [28], promotional
content [29], and in sentiment classification [24].

In order to distinguish between human users and social bots,
certain criteria such as information diffusion patterns (based on
retweets or mentions), friend features (for example, ratio of
followers to followees), content (frequency of
nouns/verbs/adverbs in a tweet), and sentiment features (emotion
scores) are used. The BotOrNot algorithm combines these
features to obtain a single score between 0 and 1 that indicates
if a Twitter account is a social bot or not [28,30]. Evaluations
of the BotOrNot program have shown that an account is most
likely to be a bot if the account score is ≥0.6 [24,27,29]. The
method used for bot detection has a detection accuracy above

JMIR Public Health Surveill 2017 | vol. 3 | iss. 4 | e98 | p. 2http://publichealth.jmir.org/2017/4/e98/
(page number not for citation purposes)

Allem et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


95%, suggesting that error from inappropriate removal of
legitimate accounts is minimal [25]. Spam-specific, unrelated
to e-cigarettes, tweets were manually removed based on
occurrence of certain keywords (see Multimedia Appendix 1
for complete list). Among the 6,185,153 tweets, 3,994,481
(64.58%) were identified as spam and were removed leaving
2,190,672 tweets remaining in the clean dataset. About a quarter
of these tweets, 412,816, contained at least 1 hashtag, yielding
119,964 unique hashtags. Hashtags provide useful information
to identify topics of conversation.

To identify topics of e-cigarette–related conversations, we
created a Twitter hashtag co-occurrence network and identified
co-occurring clusters of hashtags. The concept clusters are built
as follows: the network nodes represent all the different hashtags
extracted from the tweets, and for each tweet that contains more
than 1 hashtag, an edge (link) is placed between the nodes
corresponding to the co-occurring hashtags. A weight is
associated to each edge to convey the number of co-occurrences.
The weighted network that emerges from this procedure is then
plotted using the network visualization tool Gephi [31] and
inspected to learn which topics are often discussed together.

Given the volume of data, we used specific network conditions
to filter the visualized clusters. Among Gephi’s visualization
algorithms, we choose the Fruchterman Reingold force-directed
layout [32]. The algorithm works in analogy to gravity forces
in natural systems: 2 nodes attract each other based on the
strength of their interaction (ie, the weight of their link). This
type of layout maximizes readability of network visualizations
by minimizing node overlap. Given the scale of the Twitter
hashtag co-occurrence network, to limit the number of nodes
to display, we imposed a filter to hide nodes with low degrees.
This filtering process allows us to focus on the most important
clusters and nodes, namely those that co-occur more frequently.
From Gephi’s algorithms we finally used the Louvain
community detection algorithm which is used to reveal the most
significant clusters, groups of nodes tightly interconnected [33].
In order to illustrate how results can change due to social bots,
we created and inspected the concept clusters from the 2 corpora

of tweets, respectively including and excluding social bots and
their tweets. We then computed odds ratios from 2×2
contingency tables ([occurrence of specific hashtag among social
bots/occurrence of specific hashtag among humans]/[occurrence
of all other hashtags among bots except the specific
hashtag/occurrence of all other hashtags among humans except
the specific hashtag]) to detect if hashtags varied by source
using a Fisher exact test to determine statistical significance.

To identify where in the United States e-cigarette–related
discussions were taking place, we extracted the user location
from the geographic coordinates field of each tweet, which
Twitter collects automatically. However, we observed that many
tweets did not have the coordinates defined because each
individual Twitter account can elect to turn off this function on
their mobile phone, device, or computer, preventing Twitter
from collecting this information. To overcome this limitation,
we translated the location entered by the user in their metadata
(eg, Los Angeles) to latitude and longitude coordinates. Given
these 2 strategies, we could identify user location for
approximately 1% of all users in the analytical sample,
representing 36,549 users in the United States. We used a heat
map plot to determine where individuals discuss e-cigarettes.
In a heat map, stronger color intensity (similarly to heat)
suggests higher intensity of use in a specific area and vice versa.
By looking at frequency of tweets by location we can see where
priority areas exist for e-cigarette education campaigns.

Results

The cluster analysis from the corpus of hashtags from human
users contained 238 specific hashtags or nodes and 5203 edges
(Multimedia Appendix 2). Cluster 1 (pink) contained hashtags
indicative of behaviors (eg, #vaping), vaping identity (eg,
#vapelife), and vaping community (eg, #vapenation) (Table 1).
Cluster 2 (green) contained hashtags indicative of vaping
products (eg, #eliquids), vaping identity, and vaping community.
Cluster 3 (orange) contained hashtags indicative of dual tobacco
use (eg, #hookah) and polysubstance use (eg, #marijuana).

Table 1. Most common hashtags in each respective cluster from the bot-free corpus.

HashtagsClustera

vaping, ecigs, vapelife, vapeporn, weed, buzz, vaporizer, vapenation, eliquid, cannabis, vape, vapes, bigtobacco, ejuice, smokeshop1 (pink)

eliquids, vaper, vapelife, smoke, instavape, vapecommunity, ecig, vapors, atomizer, vapeclub, vapestagram, vapesociety2 (green)

smokers, nowsmoking, cigaretters, tobacco, week, marijuana, cigars, whisky, scotch, smoker, cigarettes, hookah, addiction, blu3 (orange)

aColors correspond to the figure found in Multimedia Appendix 2.
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Table 2. Most common hashtags in each respective cluster from the bot corpus.

HashtagsClustera

Cigars, cigar, blu, tobacco, cigarette, smoke, smoking, photography, galanecigars, lifelove1 (orange)

vapes, vape, vaping, vapor, ecig, ecigs, vapefam, vapelife, vapor, smok, vaporstorm, eliquids, vapepen, vapefamily, vapeshop,
vapecommunity, vapeporn, vapers, vaporizer, ecigaretters

2 (gray)

esmoke, esmoking, online, beast, mod, cheap, cigpet, starterskit, esmoker, mobile, ismog, modbox3 (blue)

marijuana, smoking, health, weed, tobacco, cannabis, cbd, thc, cool, bongs, tobacco, quality, cheap, vapes, ejuice, quitsmoking4 (green)

aColors correspond to the figure found in Multimedia Appendix 3.
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Table 3. Associations between hashtags and data source (bots vs humans coded) with an odds ratio > 1 indicating greater likelihood from a bot.

P valueOdds ratioHashtags

.0060.62addiction

<.0010.53atomizer

<.0012.72beast

<.0010.08bigtobacco

<.0011.33blu

<.0011.79bongs

.0021.05tobacco

<.0010.66buzz

<.0011.81cannabis

<.0011.81cheap

<.0010.66cigar

<.0011.65cigarette

<.0010.55cigarettes

<.0010.54cigars

<.0012.73cigpet

.031.58cool

<.0010.54ecig

<.0011.52ecigs

.230.97ejuice

<.0010.73eliquid

.401.06eliquids

<.0012.88esmoke

<.0012.87esmoking

<.0012.89esmoker

.921.00health

<.0010.29hookah

.030.80instavape

<.0012.89ismog

<.0011.25marijuana

<.0011.68mobile

<.0012.47mod

<.0012.41modbox

.0030.70nowsmoking

<.0012.78online

.870.96photography

<.0011.80quality

<.0012.27quitsmoking

<.0010.02scotch

.851.00smoke

<.0012.61smoker

<.0011.66smokers

.071.33smokeshop
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P valueOdds ratioHashtags

.311.04smoking

<.0012.88starterskit

<.0012.43thc

.0021.05tobacco

<.0010.82vape

<.0010.19vapecommunity

<.0010.34vapefam

<.0011.42vapefamily

<.0010.63vapelife

<.0010.78vapenation

.030.89vapepen

<.0010.90vapeporn

<.0011.86vaper

<.0011.67vapers

.031.13vapeshop

<.0010.34vapesociety

<.0010.69vapestagram

<.0011.15vaping

<.0010.68vapor

<.0010.29vaporizer

.00020.52vapors

<.0012.94vaporstorm

.56941.03weed

<.0010.02whiskey

The cluster analysis from the corpus of hashtags from social
bots contained 4 clusters with 137 hashtags or nodes and 1600
edges (Multimedia Appendix 3). Cluster 1 (orange) contained
hashtags indicative of behaviors and dual tobacco use (Table
2). Cluster 2 (gray) contained hashtags indicative of behaviors
and vaping identity and vaping community. Cluster 3 (blue)
contained hashtags indicative of products (eg, #starterskit,
#modbox), including brand new products (eg, #ismog, a new
smart device with touch technology on a vaping box, #cigpet,
a new high wattage tank or “super tank”). Cluster 4 (green)
contained hashtags indicative of smoking cessation (eg,
#quitsmoking), interest in health (eg, #health), and
polysubstance use.

Social bots were more likely to post hashtags that referenced
smoking cessation and new e-cigarette devices compared to
human users (Table 3). For example, social bots were
significantly more likely to post #quitsmoking, #ismog, and
#cigpet compared to human users.

The heat map representing 26,565 tweets collected from
December 24, 2016, to April 21, 2017, shows that the volume
of tweets is highest in the Mid-Atlantic (eg, Pennsylvania, New
Jersey, Maryland, and New York) and high on the West Coast
and Southwest (eg, California, Arizona and Nevada) (Figure
1).

JMIR Public Health Surveill 2017 | vol. 3 | iss. 4 | e98 | p. 6http://publichealth.jmir.org/2017/4/e98/
(page number not for citation purposes)

Allem et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Heat map from December 25, 2016, to April 21,2017, for 26,565 tweets.

Discussion

Principal Findings
Data from online social systems may be used to complement
and extend the surveillance of health behaviors including
tobacco product use. The hashtags we studied here provide
several direct insights into e-cigarette–related attitudes and
behaviors with the identification of 3 clusters that represent the
most cohesive posts. The cluster analysis from the corpus of
hashtags from human users demonstrated the existence of a
vaping identity and vaping community. Use of these hashtags
may serve further internalization of, and social bonding around,
vaping-related identities. These hashtags also suggest
discussions of vaping may occur in an echo chamber on Twitter
in which ideas and beliefs are amplified by those in the network
[34], normalizing vaping.

In the cluster analysis from the corpus of hashtags from human
users, we found many references to vaping-related products.
These hashtags represent a way for commercial users to make
their posts searchable and integrate themselves into online
communities of vapers. Noncommercial users may also use
these hashtags to communicate to their followers which products
they recently purchased or which products they like to use
together (eg, their favorite modifiable device paired with their
favorite e-liquid) [10].

The third hashtag cluster found in the corpus from human users
indicated dual tobacco use and polysubstance use. These
co-occurring hashtags may reflect a syndrome of risky behavior
among select vapers. While research is accumulating about dual
e-cigarette and cigarette use [35,36], there is a dearth of research
on the associations between vaping and hookah, marijuana,
alcohol, and other substance use. The findings from this study
should spur efforts to investigate these associations further.
When the population-level impact of e-cigarettes is being

debated, the co-occurrence of vaping with alcohol and other
substances should also be considered.

In the corpus of hashtags from social bots, several results stood
out in contrast to the results from the human user corpus. For
one, a cluster of hashtags was detected that referenced smoking
cessation. This suggests social bots may be used to perpetuate
discussions on e-cigarettes as a cessation device. While earlier
research has suggested Twitter posts about vaping referenced
the use of e-cigarettes in cessation [22], it is important to
distinguish between individual users and social bots when
analyzing posts on Twitter [23,24,37]. Social bots may
perpetuate misinformation about the efficacy of e-cigarettes in
cessation, thus requiring education campaigns to serve as a
vehicle to correct this misinformation.

Hashtags from social bots also represented newly introduced
products to the marketplace (eg, #ismog and #cigpet) which
were significantly less prevalent in the human user corpus of
hashtags. This finding highlights a clear benefit of using social
media data in public health surveillance. In addition to searching
for known keywords and observing trends in the number of
social media posts that contain those keywords, the concept
cluster analysis can identify new keywords or hashtags posted
on Twitter. This process can serve as an early warning system
informing public health researchers about new products or new
ways in which products are appealing to the public. By using
social media data and keyword co-occurrence analyses we can
identify new products (like ismog or cigpet), brands, marketing
themes, activities, and events associated with tobacco product
use as they emerge in near real time. The findings from this
study complement recent research that relied on search
navigation data to detect growing interest in heat-not-burn
tobacco products [38]. Taken together, public health researchers
could use data from online social systems to fill knowledge
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gaps quickly and respond more readily to the populations they
serve.

Most posts were from the Mid-Atlantic and Southwest, which
is compatible with earlier research relying on search navigation
data [9]. The findings mark priority areas for e-cigarette
education campaigns. Social media may be one way to engage
with nonusers of tobacco products to inform them of the
addictive properties of nicotine as well as the harms of
e-cigarette use [39]. Using social media as a complementary
surveillance system could allow public health researchers to
identify geographic disparities in emerging tobacco product use
earlier than traditional methods. While Twitter data should not
be used to supersede traditional health behavior surveillance
systems, social media could be used to fill information gaps
quickly and can provide an important starting off point to
address an issue of great import to public health or policy.

Limitations
Data collection relied on Twitter’s streaming application
programming interface, which prevents collecting tweets from
private Twitter accounts. As a result, findings may not represent
the attitudes and behaviors from individuals with private

accounts. This study used hashtags to identify themes in posts
on Twitter but did not specifically read and interpret each post
that the hashtags accompanied. Additional valuable information
could have been learned from the content of the posts that was
not described herein. Approximately 1% of all users in the
analytical sample provided data that allowed us to describe the
geographic areas in which e-cigarette–related discussions took
place in the United States. While this is a small percentage, it
is compatible with earlier work [25,40] and represents 36,549
users in the United States. Additionally, we did not have the
necessary demographic information (eg, age) of Twitter users
to consider population density and age distributions of
geographic areas.

Conclusion
The findings from this study can inform the design of public
health surveillance in the future. This study demonstrated the
utility in using social media data in understanding attitudes and
behaviors and the importance of distinguishing between Twitter
posts from social bots and humans during this process if the
intent is to assess views held by real users. Findings should spur
efforts to better understand the consequences of
e-cigarette–related discussions on Twitter.
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