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Abstract

Background: Public health officials and policy makers in the United States expend significant resources at the national, state,
county, and city levels to measure the rate of influenza infection. These individuals rely on influenza infection rate information
to make important decisions during the course of an influenza season driving vaccination campaigns, clinical guidelines, and
medical staffing. Web and social media data sources have emerged as attractive alternatives to supplement existing practices.
While traditional surveillance methods take 1-2 weeks, and significant labor, to produce an infection estimate in each locale, web
and social media data are available in near real-time for a broad range of locations.

Objective: The objective of this study was to analyze the efficacy of flu surveillance from combining data from the websites
Google Flu Trends and HealthTweets at the local level. We considered both emergency department influenza-like illness cases
and laboratory-confirmed influenza cases for a single hospital in the City of Baltimore.

Methods: This was a retrospective observational study comparing estimates of influenza activity of Google Flu Trends and
Twitter to actual counts of individuals with laboratory-confirmed influenza, and counts of individuals presenting to the emergency
department with influenza-like illness cases. Data were collected from November 20, 2011 through March 16, 2014. Each
parameter was evaluated on the municipal, regional, and national scale. We examined the utility of social media data for tracking
actual influenza infection at the municipal, state, and national levels. Specifically, we compared the efficacy of Twitter and Google
Flu Trends data.

Results: We found that municipal-level Twitter data was more effective than regional and national data when tracking actual
influenza infection rates in a Baltimore inner-city hospital. When combined, national-level Twitter and Google Flu Trends data
outperformed each data source individually. In addition, influenza-like illness data at all levels of geographic granularity were
best predicted by national Google Flu Trends data.

Conclusions: In order to overcome sensitivity to transient events, such as the news cycle, the best-fitting Google Flu Trends
model relies on a 4-week moving average, suggesting that it may also be sacrificing sensitivity to transient fluctuations in influenza
infection to achieve predictive power. Implications for influenza forecasting are discussed in this report.

(JMIR Public Health Surveill 2015;1(1):e5) doi: 10.2196/publichealth.4472
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Introduction

Public health officials and policy makers rely on influenza
infection rate information to make important decisions during
the course of an influenza season. Whereas influenza
surveillance has traditionally been conducted using laboratory
data, hospitalizations, and physician visits for influenza-like
illness (ILI), web and social media data sources have emerged
as attractive alternatives to supplement existing practices. While
traditional surveillance methods take 1-2 weeks, and significant
labor, to produce an infection estimate in each locale, web and
social media data are available in near real-time for a broad
range of locations. Studies have demonstrated that web queries
[1-3], Twitter messages [4-12], and other sources (eg, Wikipedia
[13], mobile app reporting [14]) may be productively mined for

influenza surveillance data. New resources like Google Flu
Trends [1], HealthTweets [15,16](Figure 1), and Flu Near You
[14] deliver near-real time estimates of infection rates.

However, few have examined the efficacy of local surveillance
[12,17,18]. In this study, we analyzed the efficacy of local flu
surveillance from Google Flu Trends and HealthTweets.
Whereas previous studies that considered either Google or
Twitter in isolation, we evaluated multiple trends available from
both. Furthermore, instead of restricting our study to hospitals
designated as ILI sentinels, or emergency department ILI rates,
we considered both emergency department ILI and
laboratory-confirmed influenza cases for a single hospital in
the city of Baltimore. This enabled us to evaluate the impact on
specific care centers when making influenza response decisions,
such as staffing and resource allocation.

Figure 1. Screenshot of HealthTweets.

Methods

Study Population and Setting
This was a retrospective observational study comparing
estimates of influenza activity from Google flu trends and
Twitter to actual counts of individuals with laboratory-confirmed
influenza, and counts of individuals presenting to the emergency
department with ILI. Each parameter was evaluated on the
municipal, regional, and national scale.

Data Collection and Methods of Measurement
Data were collected from November 20, 2011 through March
16, 2014. All measurements were recorded weekly to allow for
direct comparison between data sources. Following the Centers
for Disease Control (CDC) Convention, each week summed
the data points from Sunday through the following Saturday.
The number of municipal- (city) level subjects was estimated
by evaluating the number of patients presenting to an urban

academic emergency department in Baltimore, Maryland with
an annual volume of over 60,000 adult and 24,000 pediatric
visits. The number of confirmed influenza cases was determined
by summing the number of emergency department visits with
laboratory-confirmed influenza that occurred during each week.
Similarly, the number of patients with ILI was determined by
summing the number of emergency department patients who
reported fever with cough or sore throat each week. Regional
data were collected via the CDC surveillance reports for health
and Human Services (HHS) Region 3, including both the
percentage of patients reporting ILI and the percentage of tests
positive for influenza. National data were collected from the
CDC surveillance report of the nationwide percentage of patients
reporting ILI and the total percentage of patients testing positive
for influenza.

Google Flu Trends data for the United States, the state of
Maryland, and the city of Baltimore were downloaded directly
from the Google Flu Trends website [19]. Twitter data for the
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same three locations was obtained from the HealthTweets
website [15], an online platform for public health surveillance
aimed at sharing the latest research results on Twitter data with
the scientific community and public officials. The underlying
data were generated using a sequence of supervised
machine-learning algorithms [10,12], namely logistic regression
classifiers, the first of which identified tweets that were relevant
to health. Next, tweets that were about influenza were isolated.
The final classifier separated tweets that were about reported
influenza infection from those that only reported awareness of
the flu. The tweets indicating influenza infection constituted
our dataset. Message locations were identified using Carmen
[20], a software package that infers tweet locations using Global
Positioning System (GPS) coordinates and self-reported
locations from the free text of the user biographic profiles.

Statistical Analysis
Data were analyzed by evaluating weekly trends over time using
the Box-Jenkins procedure [21] applied to each data source
(influenza tests at our medical center, ILI at our medical center,
% reported flu cases in HHS region 3 and the USA, and %
reported ILI in HHS region 3 and the USA) in order to control
for autocorrelation in the corresponding time series. We next
fit an autoregressive integrated moving average model with
exogenous covariates (ARIMAX) to each data time series, Xt,

where p, d, and q, are the respective autoregressive, differencing,
and moving average orders of the model (Figure 2 , part a). The
φiand θiare the autoregressive and moving average parameters,
respectively, εtis a normally distributed error term with a mean
of 0, L is a lag operator defined as in Figure 2 , part b, and mtis
defined as in Figure 2 , part c, where ytis a series of predictors
(eg, Twitter and/or Google Flu Trends data), the ηiare a series
of predictor weights, and b is the total number of predictor time
series.

We chose the autoregressive, differencing, and moving average
terms of each model that minimized each its Aikake Information
Criterion (AIC) subject to the constraint that each model used
the same degree of differencing for each data source. This
constraint was imposed to enable comparison across social
media predictors (ie, Twitter, Google Flu Trends, or both). All
statistics were conducted using the R Project for Statistical
Computing, version 3.0.2 (The R Foundation for Statistical
Computing). Specifically, we used the "arima()” function in the
forecast package [22]. Parameter selection was informed by the
“auto.arima()” function, using the Hyndman and Khandakar
algorithm [23]. Deviations from the algorithm’s output were
then examined by hand and parameters that deviated from
algorithm output were chosen if they minimized AIC.

Figure 2. Equations defining the ARIMAX model.

Results

Table 1 summarizes the results of each ARIMA model
incorporating Twitter and Google Flu Trends data. Our results
show that Baltimore-area Twitter data provided a better estimate

of actual influenza cases reported in the Baltimore metropolitan
area when compared to state- and national-level Twitter data
(see Figure 3). Furthermore, a combination of Twitter and
Google Flu Trends data sources outperformed either Twitter or
Google Flu Trends individually when predicting actual influenza
outbreaks at municipal and regional levels.

JMIR Public Health Surveill 2015 | vol. 1 | iss. 1 | e5 | p. 3http://publichealth.jmir.org/2015/1/e5/
(page number not for citation purposes)

Broniatowski et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Log-likelihood (AICa) for each surveillance method.

Influenza like illness (ILI)Laboratory-confirmed influenza

USRegionCityUSRegionCity

Twitter b

-27g(61)1,1,1-66g(143)0,1,0-502g(1009)0,2,1-235g(484)0,1,5-317g(653)5,1,3-311 (627)0,1,0eUSc

-30 (68)1,1,1-70 (144)0,1,0-503 (1012)0,1,0-236 (486)0,1,5-321 (661)5,1,3-310 (624)0,1,0MDd

-32 (74)1,1,1-74 (158)0,1,3-504 (1013)0,2,1-235 (484)0,1,5-323 (666)5,1,3-308g(620)0,1,0Baltimore

Google Flu Trends

-1f,g(15)1,1,4-49f,g(110)0,1,4-494f,g(1002)1,2,4-230f,g(475)0,1,5-313g(648)5,1,4-291g(596)1,1,4US

-27 (61)1,1,1-58 (129)0,1,4-498 (1010)1,2,4-236 (486)0,1,5-318 (656)5,1,3-299 (612)1,1,4MD

-23 (56)1,1,2-60 (132)0,1,4-495 (1005)1,2,4-236 (486)0,1,5-320 (660)5,1,3-295 (604)1,1,4Baltimore

Both

-0g(17)1,1,4-49g(112)0,1,4-495g(1003)0,1,4-230g(477)0,1,5-312f,g(646)5,1,3-289f,g(594)1,1,4US

-27 (68)1,1,1-58 (130)0,1,4-498 (1011)1,2,4-235 (485)0,1,5-318 (657)5,1,3-299 (613)1,14MD

-22 (55)1,1,2-60 (134)0,1,4-500 (1007)0,2,1-235 (486)0,1,5-319 (659)5,1,3-294 (604)1,1,4Baltimore

aAIC=Aikake Information Criterion
bTwitter data from the HealthTweets website.
cUS=United States
dMD=Maryland
eSuperscript numerals indicate the autoregressive order, the order of differencing, and the moving average order, respectively. Models were chosen to
minimize AIC, guided by examinations of autocorrelation and partial autocorrelation values.
fThe best predictor across all data sources.
gThe best predictor within each data source (HealthTweets website, Google, or a linear combination of both).
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Figure 3. Plot of weekly confirmed influenza cases (right axis) as compared to standardized Baltimore social media data (left axis).

When directly comparing models that rely only on one data
source (ie, Twitter or Google Flu Trends but not both), we found
that the best-fitting Twitter models were simple whereas the
best-fitting Google Flu Trends models generally required more
parameters. For example, at the municipal level, the best-fitting
Twitter model did not require any autoregressive or moving
average terms, whereas the best-fitting Google Flu Trends model
required a 4-week moving average of Google Flu Trends data
and an autoregressive term. In general, these more complex
Google Flu Trends models outperformed the best-fitting Twitter
models. Although these Google Flu Trends models were
significantly more complex (ie, one must fit more parameters),
they had a lower AIC, indicating that they were also more
informative.

Discussion

Principal Findings
Consistent with prior work [18], we found that national-level
Google Flu Trends data may be used to track actual influenza
cases in the Baltimore area. The fact that a combination of
Twitter and Google Flu Trends data at the national (US) level
outperformed all other data sources for local and regional
confirmed influenza cases indicates that these data sources are
not redundant and that Twitter data are contributing information
useful to influenza surveillance that are not captured by the
corresponding Google Flu Trends data.
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Comparison With Prior Work
Whereas prior work using Google Flu Trends data has largely
focused on US ILI data, we extended this finding to multiple
levels of geographic granularity by examining social media
surveillance at the regional and city levels as well. We found
that US Google Flu Trends data best explained ILI rates at all
levels (including the municipal level, see Figure 4). This

contrasts with prior research, which found that Google Flu
Trends data conflated signals of influenza awareness (eg, media
attention) with signals of actual infection - overestimating the
flu season’s peak prevalence. In addition, this prior work found
that there was insufficient control for temporal autocorrelation
and a lack of analysis of Google Flu Trends data at local, rather
than national, levels [24].

Figure 4. Plot of weekly influenza-like illness cases (right axis) as compared to standardized US social media data (left axis).

In this study, we controlled for autocorrelation and exogenous
temporal factors using an ARIMAX model. The improved
performance of this model might be an indication that the
4-week moving average terms are smoothing out fluctuations
due to the news cycle. Nevertheless, because Google Flu Trends
data do not explicitly differentiate between signals of influenza
awareness and actual infection, this relatively complicated model
may buy accuracy at the cost of sensitivity to transient
phenomena. Thus, temporary spikes in media coverage are
smoothed out, but so would temporary spikes in influenza
infection.

Elsewhere, we have shown that our Twitter data overcome the
limitations identified in prior Google Flu Trends studies by
filtering out signals of influenza awareness from signals of
actual infection and enabling analysis at multiple levels of
geographic granularity [12,25]. Furthermore, the fact that the
Twitter model is more lightweight means that it is more able to
correctly track transient increases in infection when they occur
[12]. Finally, municipal-level Twitter data provided a better

account of actual influenza cases in Baltimore than did state-
or national- level data. This finding is consistent with prior work
[12] showing that local Twitter data does contribute information
that is useful for municipal surveillance. In contrast, state- and
local-level Google Flu Trends data did not improve surveillance
when compared to national GFT data.

Limitations
One limitation of our approach is that it only relies upon one
municipality. Furthermore, our analysis only examined three
seasons of influenza data, one of which (the 2012-2013 season)
is known to have been anomalous. Future work should therefore
focus on incorporating data from multiple influenza seasons.

Conclusions
Overall, our results motivate the need for future work examining
how social media may be used to track measures relevant to
influenza surveillance in multiple different locations and
seasons.
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