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Abstract

Background: With the internet’s penetration and use constantly expanding, this vast amount of information can be employed
in order to better assess issues in the US health care system. Google Trends, a popular tool in big data analytics, has been widely
used in the past to examine interest in various medical and health-related topics and has shown great potential in forecastings,
predictions, and nowcastings. As empirical relationships between online queries and human behavior have been shown to exist,
a new opportunity to explore the behavior toward asthma—a common respiratory disease—is present.

Objective: This study aimed at forecasting the online behavior toward asthma and examined the correlations between queries
and reported cases in order to explore the possibility of nowcasting asthma prevalence in the United States using online search
traffic data.

Methods: Applying Holt-Winters exponential smoothing to Google Trends time series from 2004 to 2015 for the term “asthma,”
forecasts for online queries at state and national levels are estimated from 2016 to 2020 and validated against available Google
query data from January 2016 to June 2017. Correlations among yearly Google queries and between Google queries and reported
asthma cases are examined.

Results: Our analysis shows that search queries exhibit seasonality within each year and the relationships between each 2 years’
queries are statistically significant (P<.05). Estimated forecasting models for a 5-year period (2016 through 2020) for Google
queries are robust and validated against available data from January 2016 to June 2017. Significant correlations were found
between (1) online queries and National Health Interview Survey lifetime asthma (r=–.82, P=.001) and current asthma (r=–.77,
P=.004) rates from 2004 to 2015 and (2) between online queries and Behavioral Risk Factor Surveillance System lifetime (r=–.78,
P=.003) and current asthma (r=–.79, P=.002) rates from 2004 to 2014. The correlations are negative, but lag analysis to identify
the period of response cannot be employed until short-interval data on asthma prevalence are made available.

Conclusions: Online behavior toward asthma can be accurately predicted, and significant correlations between online queries
and reported cases exist. This method of forecasting Google queries can be used by health care officials to nowcast asthma
prevalence by city, state, or nationally, subject to future availability of daily, weekly, or monthly data on reported cases. This
method could therefore be used for improved monitoring and assessment of the needs surrounding the current population of
patients with asthma.

(JMIR Public Health Surveill 2018;4(1):e24) doi: 10.2196/publichealth.8726
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Introduction

Health informatics is the field where information technology,
computer science, social sciences, and health care meet [1].
Recently, with the use of big data (ie, large data volumes
characterized by high speed and wide dataset variety [2-4])
being all the more applied in research in general, health
informatics provides fertile ground for big data applications.

According to Gu et al [5], big data health care research consists
of 3 research stages: disease, life and health, and nursing. Focus
is being given to various aspects of diseases, technology, and
health care services in areas such as epidemics, data mining,
machine learning, and customized service [5]. Big data is being
increasingly integrated in health care informatics [5-6] and has
been used in the past in smart city management.

Over the last few years during the integration of the health pillar
in smart cities, where big data is being continuously gathered
and analyzed [7], the concept of smart health has been rising
[8-10]. Smart health as a concept is derived from the intersection
of medical informatics, public health, and business, where large
volumes of social media data, payer-provider big data,
genomic-driven big data, and biomedical data are being used
for the monitoring and evaluation of patients’ conditions [10].
As life expectancy increases, so does the cost of health care,
and thus innovative methods are required to achieve improved
cost-effective quality services. The use of big data in smart
health can assist in P4 medicine (preventive, participatory,
predictive, and personalized) [8], in the detection, prediction,
and prevention of diseases [5], and in the health industry in
general [10] while also taking into account the cost, data sources
and quality, and population [4].

What has been of notable popularity in big data analytics is the
analysis of online search queries [11-12], mainly using Google
Trends [13], a popular open tool that has been widely integrated
in scientific research over the course of the past decade, mainly
focused on health-related topics [6]. Examples include analysis
of online interest in multiple sclerosis [14], epilepsy [15-16],
silicosis [17], dementia [18], urinary tract infection [19], Ebola
[20], the flu [21-23], tobacco and lung cancer [24], epidemics
[25-26], and even in illegal drugs such as dabbing [27], krokodil
[28], and methamphetamine [29]. This use of big data has
formed the cornerstone of a new concept, the science of
infodemiology, which uses the vast variety of data available on
the internet such as online queries, publications, or posts on
blogs and websites for real-time data analysis with the aim of
informing public health and public policy, thus providing a
viable alternative to the time-consuming traditional methods of
gathering health care data such as population surveys and
registries. The use of infodemiology data for surveillance
purposes is called infoveillance and could potentially allow for
more timely and targeted health care interventions [30].

In this study, online queries for the term “asthma” in the United
States were analyzed in order to explore the possibility of

nowcasting (ie, forecasting the present) asthma prevalence using
Google Trends. Asthma was selected because it is a common
chronic respiratory disease characterized by exacerbations, also
known as asthma attacks; therefore, the reported cases are bound
to show seasonality as well as constant interest.

Asthma is a chronic condition characterized by airway
inflammation and hyper-responsiveness that causes airways to
constrict in response to exercise, infection, exposure to allergens,
and occupational exposures [31]. In 2014, it was estimated that
approximately 7.4% of the adult US population and 8.6% of
US children lived with asthma [32]. During childhood, asthma
is more prevalent in males, whereas in adulthood prevalence
shifts toward females. Black and multirace people also have a
higher prevalence than white people [33-34].

Asthma presents with coughing, wheezing, and chest tightness
that seem to be worse during the night and early mornings.
These symptoms, along with a family history of asthma or atopic
dermatitis, can prompt investigations to confirm an asthma
diagnosis. Exacerbation of normal asthma symptoms is more
common in patients with uncontrolled asthma or in high-risk
patients [35]. Certain types of asthma exacerbations are linked
to particular seasons of the year with those caused by pollen
and mold being truly seasonal [36]. It has been shown that
pediatric patients experience a peak of asthma exacerbations
during the fall and spring months [37], whereas adult patients
experience a peak of asthma exacerbations at year end [38].

The management of asthma usually involves the use of several
inhalers, leading to a rather complicated treatment regime that
presents difficulties in terms of patient compliance because it
interferes with their daily living activities. Poor compliance can
lead to increased morbidity as well as increased cost of treatment
[39]. Apart from treatment compliance, another important factor
that weighs in the success of the treatment is inhaler technique,
as improper inhaler use is linked to poor asthma control. Studies
have shown that 33% to 94% of patients do not receive any
training regarding proper inhaler technique, which leads to a
great number of patients using inhalers incorrectly [40]. Asthma
self-management education and personalized advice can improve
a patient’s asthma control and quality of life, along with
reducing asthma exacerbations and hospital admissions [41].

Asthma has several social complications such as limiting
patients’ activity levels [42], which has an economic impact on
the country’s health care system. It was estimated that in 2007,
medical expenses, missed work and school days, and early
deaths due to asthma cost the United States $56 billion [43].

Google Trends data have been previously shown to be valid by
many studies [44], and work on the subject has shown the tool’s
contribution to forecasting [45-46] and analysis of online
behavior, provided careful selection of the examined terms [47].
The aim of this paper is to examine if nowcasting asthma
prevalence in the United States is possible using online search
traffic data.
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Methods

Monthly time series from Google Trends for the keyword
“asthma” from 2004 to 2015 in the United States and by
individual state were used. The data were normalized by Google
and downloaded in .csv format on July 7, 2017, between 12:47
and 13:02 for the United States and on July 18 between 14:03
and 14:33 for each of the 50 states and the District of Columbia.
The data adjustment procedure is reported by Google as follows
[48]: “Search results are proportionate to the time and location
of a query: Each data point is divided by the total searches of
the geography and time range it represents, to compare relative
popularity. Otherwise places with the most search volume would
always be ranked highest. The resulting numbers are then scaled
on a range of 0 to 100 based on a topic’s proportion to all
searches on all topics. Different regions that show the same
number of searches for a term will not always have the same
total search volumes.”

The seasonality of asthma queries was explored followed by
the estimation of the forecasts for the online interest in the term
from 2016 through 2020 for the country as well as for each
state. The additive method for the Holt-Winters exponential
smoothing (using the statistical programming language R) is
employed. The Holt-Winters equations [49] can be seen in
Figure 1.

In order to further elaborate on the seasonality, the Pearson
correlations for Google Trends data for the term “asthma”
between each 2 years from 2004 to 2015 in the United States
were calculated. Finally, the Pearson correlations between
Google queries and the National Health Interview Survey
(NHIS) prevalence data [50] from 2004 to 2015 and Behavioral
Risk Factor Surveillance System (BRFSS) prevalence data [51]
from 2004 to 2014 were examined.

Asthma is not included in the list of diseases with a Centers for
Disease Control and Prevention (CDC) surveillance case
definition, defined as “a set of uniform criteria used to define
a disease for public health surveillance. Surveillance case
definitions enable public health officials to classify and count
cases consistently across reporting jurisdictions. They provide
uniform criteria of national notifiable infectious and
non-infectious conditions for reporting purposes” [52]. Thus,
nationwide surveys are used to gather information regarding
asthma prevalence, including additional information on asthma
control, medications, and hospitalizations [53]. The BRFSS is
a “state-based, random-digit–dialed telephone survey designed
to monitor the prevalence of the major behavioral risks among
adults associated with premature morbidity and mortality,” and
the NHIS is a “multistage probability sample survey designed
to solicit health and demographic information about the
population, conducted annually with face-to-face interviews in
a nationally representative sample of households” [54].

In 2011, the BRFSS changed its weighting methodology in
addition to also including mobile phone respondents. Therefore,
any comparisons between years before and after 2011 should
be carefully interpreted. In this study, no such comparisons are
made, as each year’s online queries are compared with the
respective year’s asthma reported cases, thus including no
cross-year comparisons. For this study, we used the CDC
definition of asthma prevalence, based on affirmative responses
to the following NHIS questions: (adults) “Have you ever been
told by a doctor or other health professional that you had
asthma?” and “Do you still have asthma?” and (children) “Has
a doctor or other professional ever told you that [sample child]
had asthma?” and “Does [sample child] still have asthma?”
[55].

Figure 1. Equations for Holt-Winters exponential smoothing, where yx and ŷx denote the initial series and the forecasts, respectively. The lx, bx, and

sx denote the level, the trend, and seasonal estimates for month x, respectively, with m denoting the period of the seasonality (ie, 12 in this case), and

h+
m= (h–1)mod m +1. The level, trend, and seasonal change smoothing factors are denoted by constants α, β*, and γ, respectively. The estimated values

for the coefficients for the level and trend are denoted by a and b, respectively, while the seasonal coefficients are denoted by s1,...,s12, for month 1,...,12,
respectively.

Results

Online Interest in the United States
Figure 2 shows a heat map of the United States classified into
5 groups of interest in the term “asthma” from 2004 to 2015

(ie, 0 to 20, 21 to 40, 41 to 60, 61 to 80, and 81 to 100; light
blue to darker blue).

Out of the 50 states and District of Columbia, 29 fall into the
81 to 100 group, 21 in the 61 to 80 group, only 1 (Oregon) in
the 41 to 60 group, and none in the 21 to 40 and 0 to 20 groups.
This classification indicates that the examined term is of high
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interest to the population of the United States. The detailed data
for Figure 2 are available in Multimedia Appendix 1, Table A1.

Figures 3 and 4 depict the changes in online interest in the term
“asthma” for the period 2004 to 2015 and the seasonal changes
for each year from 2004 to 2015, respectively. As is evident,
the data follow a seasonal trend. All years’ data, as presented
in Figure 4, follow a similar pattern during a full year,
supporting our hypothesis that the seasonality of asthma
prevalence in the United States is depicted in online searches.

Figure 5 consists of the changes by state in online interest in
the term “asthma” by year from 2004 to 2015. All data are
available in Multimedia Appendix 1, Table A2.

There has been a significant increase in searches for the term
“asthma” in the states from 2004 to 2015, with the lowest count
of states in the 81 to 100 group being in 2007 and the highest
in 2012. The top asthma-related queries in the United States
from January 2004 to December 2015 include “allergy asthma”
(100), “asthma symptoms” (45), “asthma attack” (35), “what is
asthma” (25), “asthma inhaler” (20), “asthma children” (15),
“exercise asthma” (15), “asthma medications” (10), and “allergy
and asthma center” (10).

As is evident, online behavioral changes toward the term
“asthma” depict behavior toward said disease. The next steps
are to examine if forecasting online interest in the United States
is possible and identify existing relationships between online
search traffic data and reported asthma cases.

Figure 2. Online interest by state in the term "asthma" from 2004 to 2015.
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Figure 3. Monthly changes in online interest in the term "asthma" from 2004 to 2015.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 5http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Weekly changes in online interest in the term "asthma" for each year from 2004 to 2015.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 6http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Online interest by state in the term "asthma" per year from 2004 to 2015.

Forecasting Online Interest in the United States
Figure 6 depicts changes in online interest over the period 2004
to 2015 and estimated forecasts from 2005 to 2020. The
estimated model closely approximates the actual Google queries
for the term “asthma” in the United States over the examined
period.

The smoothing parameters for the additive Holt-Winters
exponential smoothing with trend and additive seasonal
component are α=.33, β*=0, and γ=.65. The estimated values
for the coefficients for the level, trend and season are as follows:
a=69.54, b=–.07, s1=–.94, s2=1.44, s3=3.37, s4=7.84, s5=2.51,
s6=–5.68, s7=–8.51, s8=–7.20, s9=1.89, s10=4.67, s11=1.11, and
s12=–3.53.

In order to elaborate on the robustness of the forecasting model,
the estimated values are validated against the available Google
queries for the term “asthma” from January 2016 to June 2017,

as is shown in Figure 7. It is evident that the forecasts follow
the same curve and well approximate the actual Google Trends
data for the aforementioned period.

It is therefore suggested that the online behavior exhibits
seasonality and can be predicted. The last step in exploring if
nowcasting of asthma prevalence in the United States is possible
using Google Trends is to examine the correlations between
Google Trends data and reported lifetime and current asthma.

Google Trends Versus Reported Asthma
As shown in Figure 4, each examined year’s online interest
seems to follow a similar seasonal trend from January to
December. To elaborate on the seasonal trend, the Pearson
correlations between each 2 years’queries are calculated (Table
1). The monthly Google Trends data between each 2 years from
2004 to 2015 exhibit high correlations, while all comparisons
are statistically significant, with P<.05.
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Figure 6. Google Trends (2004 to 2015) versus forecasts (2005 to 2020) in the United States.

Figure 7. Google Trends (2004 to 2015) versus forecasts (January 2016 to June 2017) in the United States.
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Table 1. Pearson correlations between each 2 years’ normalized Google asthma queries in the United States from 2004 to 2015.

20142013201220112010200920082007200620052004

——————————.892005

—————————.89.862006

————————.77.85.772007

———————.78.81.93.942008

——————.80.89.64.76.792009

—————.81.92.82.87.94.882010

————.93.91.93.87.85.93.942011

———.91.98.82.90.81.85.90.882012

——.90.92.89.93.90.89.72.87.842013

—.92.86.83.82.78.87.77.68.82.752014

.93.98.90.92.88.93.92.86.69.85.862015

Table 2. Total lifetime and current asthma National Health Interview Survey (2004 to 2015) and Behavioral Risk Factor Surveillance System (2004
to 2014) prevalence data.

BRFSSbNHISaYear

Asthma hitscCurrent asthmaLifetime asthmaAsthma hitscCurrent asthmaLifetime asthma

83.1720,422,38533,084,18381.4120,54530,1892004

80.3319,453,97430,661,47679.5822,22732,6212005

73.9222,853,57035,107,59972.5822,87634,1322006

68.1723,556,04836,832,79865.6622,87934,0082007

66.9224,521,00538,050,50565.0023,33338,4502008

67.9224,051,24538,033,37165.8324,56739,9302009

62.8325,069,37339,005,33861.4125,71039,1912010

66.4222,605,96134,759,10664.5825,94339,5042011

67.6725,954,77139,085,74465.9125,55339,9822012

67.0026,227,48441,030,77765.2522,64837,3282013

68.7526,957,91840,706,40166.5824,00940,4612014

———68.1624,63340,1532015

aNHIS: National Health Interview Survey.
bBRFSS: Behavioral Risk Factor Surveillance System.
cValues slightly vary due to the different time frame: 2004 to 2015 for NHIS and 2004 to 2014 for BRFSS.

To further explore the relationships between online searches
and asthma prevalence in the United States, data on the yearly
cases of lifetime and current asthma for all ages from the NHIS
prevalence data from 2004 to 2015 [50] and the BRFSS
prevalence data [51] from 2004 to 2014 (Table 2) are used.

The Pearson correlations of the annual NHIS prevalence data
with the annual averages of the normalized Google Trends data
from 2004 to 2015 show high correlations between lifetime
asthma (r=–.82, P=.001) and current asthma (r=–.77, P=.004).
BRFSS prevalence data also exhibit high correlations with
Google Trends data for lifetime (r=–.78, P=.003) and current
asthma (r=–.79, P=.002). The Spearman correlations for the
aforementioned pairs of variables all exhibit the same negative
relationship, although not all are statistically significant.

Although statistically significant, all Pearson correlations are
negative, and lag analysis should be employed to identify the
time interval of response between asthma online interest and
case reporting or vice versa. Although Google Trends data for
the term “asthma” in the United States over the examined period
are monthly, the data on lifetime and current asthma are yearly;
until weekly or monthly data are available, further analysis
cannot by done.

Forecasting Online Interest by State
In order to show that the method of nowcasting asthma
prevalence in the United States using Google queries is possible,
this methodology is applied in each of the 50 states and the
District of Columbia and exhibits good forecasting results.
Figures 8 to 11 depict the changes in online interest in the term

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 9http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


“asthma” from 2004 to 2015 and forecasts from 2016 to 2020
for the 4 most populated states (ie, California, Texas, Florida,
and New York), and the graphs for all states can be found in
Multimedia Appendix 2, Figures B1-B51. The values of the
smoothing parameters α, β*, and γ and the coefficients for each
state’s forecasts can be found in Multimedia Appendix 1, Tables
A3 and A4, respectively. As online behavioral changes can be
predicted and data on asthma cases are correlated with online
queries, nowcasting of asthma could be possible provided
short-interval data (eg, monthly, weekly, or even daily) are
available.

According to the results, online interest in Alaska, Nebraska,
New Hampshire, Oklahoma, and Tennessee exhibits increasing
forecast trends from 2016 to 2020. On the contrary, online
interest in Delaware, Kansas, Oregon, and Virginia exhibits

decreasing forecast trends from 2016 to 2020. Overall, the states
of Arizona, California, Connecticut, Florida, Georgia, Illinois,
Indiana, Maryland, Michigan, Missouri, New Jersey, New York,
North Carolina, Pennsylvania, Texas, and Washington show
high interest in the term “asthma” throughout the examined
period, while in Hawaii and Wyoming, interest is low. Virginia
is the only state where online interest exhibits very significant
variations from 2004 to 2016.

Our study indicates that analysis of online behavior toward
asthma by state can assist with nowcasting asthma prevalence.
Since search queries and reporting of asthma are shown to
correlate in the United States, if short-interval data (eg, weekly
or monthly) were made available, a robust nowcasting model
could be developed.

Figure 8. Google Trends (2004 to 2015) versus forecasts (2005 to 2020) in California.
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Figure 9. Google Trends (2004 to 2015) versus forecasts (2005 to 2020) in Texas.

Figure 10. Google Trends (2004 to 2015) versus forecasts (2005 to 2020) in Florida.
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Figure 11. Google Trends (2004 to 2015) versus forecasts (2005 to 2020) in New York.

Discussion

Principal Findings
In addressing integration of smart health into smart city
management, monitoring of search traffic data could be useful
in predictions and nowcastings, as has also been suggested by
previous work on the subject. This study shows that online
interest can be predicted nationally and by state. Therefore,
governments, policy makers, and health care officials have the
ability to use these data to better address the responsiveness of
the US health care system at national, regional, state, or even
city level in order to nowcast asthma prevalence. Google Trends
also provides detailed regional US data, and this method can
be applied in other countries as well.

Empirical relationships between Google Trends and human
behavior have been suggested, therefore nowcasting asthma
prevalence in the United States is possible using online search
traffic data, subject to availability of daily, weekly, or monthly
data. In this study, it was shown that online search traffic data
are highly correlated between each 2 years during the examined
period and that Google Trends data are correlated with reported
cases of lifetime and current asthma in the United States from
2004 to 2015.

After analyzing changes in online interest in the United States
over the examined period, the next step was to identify any
seasonal similarities between each 2 years’ (monthly) search
queries. As the hits between each 2 years from 2004 to 2015
on the term “asthma” were highly correlated, the seasonal effect
was evident; using Holt-Winters exponential smoothing, 5-year

forecasts for online interest in the term from 2016 to 2020
nationally and in each state were estimated. Validated against
available data from January 2016 to June 2017, the forecasts
were well fitted and accurately approximated the actual Google
Trends data for the same period, suggesting seasonal behavioral
changes over the course of a year can be accurately predicted
using the proposed method. Google Trends data are correlated
with reported cases of lifetime and current asthma, and thus
nowcasting asthma prevalence in the United States is suggested
to be possible using online search traffic data. As the calculated
correlations are negative at this point and there is a lag between
internet queries and asthma reporting and vice versa,
short-interval data (eg, monthly, weekly, and daily—not
available at this point) are required in order to identify said lag.

Limitations
This study has limitations. It cannot be assumed that each hit
corresponds to an asthma case and vice versa because hits could
be also attributed to academic or research reasons or general
interest on the subject, and they could be influenced by news
reports or social media. Queries related to asthma could be also
influenced by factors such as changes of health insurance and
weather or environmental conditions that trigger similar
symptoms. This is a general limitation when examining online
queries, despite the empirical relationships that have been shown
to exist between Google Trends and health data.

The sample is not representative, although as internet penetration
increases, so does the possibility of higher volumes of online
queries being related to asthma cases. Additionally, nowcasting
asthma prevalence using online search queries is not possible
at this point because the available data on reported lifetime and
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current asthma are yearly. If monthly, weekly, or daily data on
past asthma prevalence were available and the correlations
between search traffic data and reported asthma are validated,
the possibility of nowcasting asthma could be further explored.

This study has not accounted for state-by-state confounders that
could influence search patterns, such as the socioeconomic
status and demographics of different states that might be relevant
to asthma prevalence, as this exceeds the scope of this paper.
The latter, along with the impact of socioeconomic and cultural
differences on asthma reporting and online search patterns, are
of interest for further investigation. In addition, more search
terms related to asthma symptoms such as “breathlessness” and
“wheezing” could be included in future research on asthma
monitoring in the United States.

Conclusion
The findings of this study support previous work on the subject
and highlight the value of online data in health and medical
informatics. Google Trends data have been shown to be useful
and valuable in the monitoring, surveillance, or prediction of
epidemics and outbreaks [20,25-26,56], as have been various
other internet sources such as Twitter [57], medical portals [58],
and Baidu [59]. Google queries provide us with the revealed
and not the stated user interest contrary to traditional survey
methods [60], and the use of Web data will benefit the

exploration of behavior in medical issues [61]. Data from
traditional sources and big data should be combined in order to
take full advantage of all available information [62]. When
daily, weekly, or monthly data on reported asthma cases are
made available, data from online sources like Google Trends
could be used centrally and then applied by state or used by
each city or state individually, assisting with the integration of
the smart health concept in smart city management.

Internet behavior can be measured by infodemiology metrics
as information patterns and population health are related [30].
Surveillance of asthma is mainly assessed through nationwide
surveys and interviews, and data on asthma prevalence are only
available long after the cases of asthma are reported. Nowcasting
Google queries on selected terms related to asthma could assist
health officials at both national and state levels to detect any
behavioral variations toward the disease, providing
time-effective allocation of resources and a more cost-effective
approach to asthma assessment. This study suggests a
relationship between asthma prevalence and Google Trends
data. In the future, analysis of online queries could be valuable
in the monitoring and evaluation of the responsiveness of the
US health care system to asthma patient admissions and
prescription drug needs, as well as assisting with the
implementation of targeted health interventions and campaigns
during periods when increased asthma admissions are predicted.

Conflicts of Interest
None declared.

Multimedia Appendix 1
State data tables.

[PDF File (Adobe PDF File), 52KB-Multimedia Appendix 1]

Multimedia Appendix 2
Google Trends (2004 to 2015) versus forecasts (2005 to 2020) by state.

[PDF File (Adobe PDF File), 3MB-Multimedia Appendix 2]

References

1. Vignesh RP, Sivasankar E, Pitchiah R. Framework for smart health: toward connected data from big data. 2015 Presented
at: Intelligent Computing and Applications Proceedings of the International Conference; December 22-24, 2014; New Delhi
p. 423-433. [doi: 10.1007/978-81-322-2268-2]

2. Hilbert M, López P. The world's technological capacity to store, communicate, and compute information. Science 2011
Apr 01;332(6025):60-65 [FREE Full text] [doi: 10.1126/science.1200970] [Medline: 21310967]

3. Chen CP, Zhang C. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Information
Sciences 2014 Aug;275:314-347. [doi: 10.1016/j.ins.2014.01.015]

4. Al Nuaimi E, Al Neyadi H, Mohamed N, Al-Jaroodi J. Applications of big data to smart cities. J Internet Serv Appl 2015
Dec 1;6(1). [doi: 10.1186/s13174-015-0041-5]

5. Gu D, Li J, Li X, Liang C. Visualizing the knowledge structure and evolution of big data research in healthcare informatics.
Int J Med Inform 2017 Feb;98:22-32. [doi: 10.1016/j.ijmedinf.2016.11.006] [Medline: 28034409]

6. Nuti SV, Wayda B, Ranasinghe I, Wang S, Dreyer RP, Chen SI, et al. The use of google trends in health care research: a
systematic review. PLoS One 2014;9(10):e109583 [FREE Full text] [doi: 10.1371/journal.pone.0109583] [Medline:
25337815]

7. Khan J, Anjum A, Soomro K, Tahir M. Towards cloud based big data analytics for smart future cities. J Cloud Comp 2015
Feb 18;4(1). [doi: 10.1186/s13677-015-0026-8]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 13http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=publichealth_v4i1e24_app1.pdf&filename=97fecf487e116a0fd7ec5f733351b18b.pdf
https://jmir.org/api/download?alt_name=publichealth_v4i1e24_app1.pdf&filename=97fecf487e116a0fd7ec5f733351b18b.pdf
https://jmir.org/api/download?alt_name=publichealth_v4i1e24_app2.pdf&filename=b00bf0155b44f209e4f2f005dccb91be.pdf
https://jmir.org/api/download?alt_name=publichealth_v4i1e24_app2.pdf&filename=b00bf0155b44f209e4f2f005dccb91be.pdf
http://dx.doi.org/10.1007/978-81-322-2268-2
http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=21310967
http://dx.doi.org/10.1126/science.1200970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21310967&dopt=Abstract
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1186/s13174-015-0041-5
http://dx.doi.org/10.1016/j.ijmedinf.2016.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28034409&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0109583
http://dx.doi.org/10.1371/journal.pone.0109583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25337815&dopt=Abstract
http://dx.doi.org/10.1186/s13677-015-0026-8
http://www.w3.org/Style/XSL
http://www.renderx.com/


8. Holzinger A, Röcker C, Ziefle M. From smart health to smart hospitals. Lect Notes Comput Sc 2015;8700:1-20. [doi:
10.1007/978-3-319-16226-3_1]

9. Jung H, Chung K. Sequential pattern profiling based bio-detection for smart health service. Cluster Comput 2014 Apr
3;18(1):209-219. [doi: 10.1007/s10586-014-0370-3]

10. Pramanik I, Lau R, Demirkan H, Azad A. Smart health: big data enabled health paradigm within smart cities. Expert Syst
Appl 2017 Nov;87:370-383 [FREE Full text] [doi: 10.1016/j.eswa.2017.06.027]

11. Preis T, Moat HS, Stanley HE, Bishop SR. Quantifying the advantage of looking forward. Sci Rep 2012;2:350 [FREE Full
text] [doi: 10.1038/srep00350] [Medline: 22482034]

12. Preis T, Moat HS, Stanley HE. Quantifying trading behavior in financial markets using Google Trends. Sci Rep 2013;3:1684
[FREE Full text] [doi: 10.1038/srep01684] [Medline: 23619126]

13. Google Trends. URL: https://trends.google.com/trends/explore [accessed 2017-08-11] [WebCite Cache ID 6sdKCrWKt]
14. Brigo F, Lochner P, Tezzon F, Nardone R. Web search behavior for multiple sclerosis: an infodemiological study. Mult

Scler Relat Disord 2014 Jul;3(4):440-443. [doi: 10.1016/j.msard.2014.02.005] [Medline: 25877054]
15. Bragazzi NL, Bacigaluppi S, Robba C, Nardone R, Trinka E, Brigo F. Infodemiology of status epilepticus: a systematic

validation of the Google Trends-based search queries. Epilepsy Behav 2016 Feb;55:120-123. [doi:
10.1016/j.yebeh.2015.12.017] [Medline: 26773681]

16. Brigo F, Igwe SC, Ausserer H, Nardone R, Tezzon F, Bongiovanni LG, et al. Why do people Google epilepsy? An
infodemiological study of online behavior for epilepsy-related search terms. Epilepsy Behav 2014 Feb;31:67-70. [doi:
10.1016/j.yebeh.2013.11.020] [Medline: 24361764]

17. Bragazzi NL, Dini G, Toletone A, Brigo F, Durando P. Leveraging big data for exploring occupational diseases-related
interest at the level of scientific community, media coverage and novel data streams: the example of silicosis as a pilot
study. PLoS One 2016;11(11):e0166051 [FREE Full text] [doi: 10.1371/journal.pone.0166051] [Medline: 27806115]

18. Wang H, Chen D, Yu H, Chen Y. Forecasting the incidence of dementia and dementia-related outpatient visits with Google
Trends: evidence From Taiwan. J Med Internet Res 2015;17(11):e264 [FREE Full text] [doi: 10.2196/jmir.4516] [Medline:
26586281]

19. Rossignol L, Pelat C, Lambert B, Flahault A, Chartier-Kastler E, Hanslik T. A method to assess seasonality of urinary tract
infections based on medication sales and Google Trends. PLoS One 2013;8(10):e76020 [FREE Full text] [doi:
10.1371/journal.pone.0076020] [Medline: 24204587]

20. Alicino C, Bragazzi NL, Faccio V, Amicizia D, Panatto D, Gasparini R, et al. Assessing Ebola-related web search behaviour:
insights and implications from an analytical study of Google Trends-based query volumes. Infect Dis Poverty 2015 Dec
10;4:54 [FREE Full text] [doi: 10.1186/s40249-015-0090-9] [Medline: 26654247]

21. Kang M, Zhong H, He J, Rutherford S, Yang F. Using Google Trends for influenza surveillance in South China. PLoS One
2013;8(1):e55205 [FREE Full text] [doi: 10.1371/journal.pone.0055205] [Medline: 23372837]

22. Davidson MW, Haim DA, Radin JM. Using networks to combine big data and traditional surveillance to improve influenza
predictions. Sci Rep 2015 Jan 29;5:8154 [FREE Full text] [doi: 10.1038/srep08154] [Medline: 25634021]

23. Dukic V, Lopes H, Polson N. Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J Am Stat
Assoc 2012 Aug 14;107(500):1410-1426. [doi: 10.1080/01621459.2012.713876]

24. Zhang Z, Zheng X, Zeng DD, Leischow SJ. Information seeking regarding tobacco and lung cancer: effects of seasonality.
PLoS One 2015;10(3):e0117938 [FREE Full text] [doi: 10.1371/journal.pone.0117938] [Medline: 25781020]

25. Sentana-Lledo D, Barbu CM, Ngo MN, Wu Y, Sethuraman K, Levy MZ. Seasons, searches, and intentions: what the Internet
can tell us about the bed bug (Hemiptera: Cimicidae) epidemic. J Med Entomol 2016 Jan;53(1):116-121. [doi:
10.1093/jme/tjv158] [Medline: 26474879]

26. Fenichel EP, Kuminoff NV, Chowell G. Skip the trip: air travelers' behavioral responses to pandemic influenza. PLoS One
2013;8(3):e58249 [FREE Full text] [doi: 10.1371/journal.pone.0058249] [Medline: 23526970]

27. Zhang Z, Zheng X, Zeng DD, Leischow SJ. Tracking dabbing using search query surveillance: a case study in the United
States. J Med Internet Res 2016 Sep 16;18(9):e252 [FREE Full text] [doi: 10.2196/jmir.5802] [Medline: 27637361]

28. Zheluk A, Quinn C, Meylakhs P. Internet search and krokodil in the Russian Federation: an infoveillance study. J Med
Internet Res 2014 Sep 18;16(9):e212 [FREE Full text] [doi: 10.2196/jmir.3203] [Medline: 25236385]

29. Gamma A, Schleifer R, Weinmann W, Buadze A, Liebrenz M. Could Google Trends be used to predict
methamphetamine-related crime? An analysis of search volume data in Switzerland, Germany, and Austria. PLoS One
2016;11(11):e0166566 [FREE Full text] [doi: 10.1371/journal.pone.0166566] [Medline: 27902717]

30. Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to
analyze search, communication and publication behavior on the Internet. J Med Internet Res 2009;11(1):e11 [FREE Full
text] [doi: 10.2196/jmir.1157] [Medline: 19329408]

31. Akinbami LJ, Moorman JE, Bailey C, Zahran HS, King M, Johnson CA, et al. Trends in asthma prevalence, health care
use, and mortality in the United States, 2001-2010. NCHS Data Brief 2012 May(94):1-8 [FREE Full text] [Medline:
22617340]

32. FastStats: Asthma. National Center for Health Statistics. URL: http://www.cdc.gov/nchs/fastats/asthma.htm [accessed
2018-02-15] [WebCite Cache ID 6sdJKRPmf]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 14http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://dx.doi.org/10.1007/978-3-319-16226-3_1
http://dx.doi.org/10.1007/s10586-014-0370-3
https://doi.org/10.1016/j.eswa.2017.06.027
http://dx.doi.org/10.1016/j.eswa.2017.06.027
http://dx.doi.org/10.1038/srep00350
http://dx.doi.org/10.1038/srep00350
http://dx.doi.org/10.1038/srep00350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22482034&dopt=Abstract
http://dx.doi.org/10.1038/srep01684
http://dx.doi.org/10.1038/srep01684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23619126&dopt=Abstract
https://trends.google.com/trends/explore
http://www.webcitation.org/

                                            6sdKCrWKt
http://dx.doi.org/10.1016/j.msard.2014.02.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25877054&dopt=Abstract
http://dx.doi.org/10.1016/j.yebeh.2015.12.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26773681&dopt=Abstract
http://dx.doi.org/10.1016/j.yebeh.2013.11.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24361764&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0166051
http://dx.doi.org/10.1371/journal.pone.0166051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27806115&dopt=Abstract
http://www.jmir.org/2015/11/e264/
http://dx.doi.org/10.2196/jmir.4516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26586281&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0076020
http://dx.doi.org/10.1371/journal.pone.0076020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24204587&dopt=Abstract
https://idpjournal.biomedcentral.com/articles/10.1186/s40249-015-0090-9
http://dx.doi.org/10.1186/s40249-015-0090-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26654247&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0055205
http://dx.doi.org/10.1371/journal.pone.0055205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23372837&dopt=Abstract
http://dx.doi.org/10.1038/srep08154
http://dx.doi.org/10.1038/srep08154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25634021&dopt=Abstract
http://dx.doi.org/10.1080/01621459.2012.713876
http://dx.plos.org/10.1371/journal.pone.0117938
http://dx.doi.org/10.1371/journal.pone.0117938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25781020&dopt=Abstract
http://dx.doi.org/10.1093/jme/tjv158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26474879&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0058249
http://dx.doi.org/10.1371/journal.pone.0058249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23526970&dopt=Abstract
http://www.jmir.org/2016/9/e252/
http://dx.doi.org/10.2196/jmir.5802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27637361&dopt=Abstract
http://www.jmir.org/2014/9/e212/
http://dx.doi.org/10.2196/jmir.3203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25236385&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0166566
http://dx.doi.org/10.1371/journal.pone.0166566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27902717&dopt=Abstract
http://www.jmir.org/2009/1/e11/
http://www.jmir.org/2009/1/e11/
http://dx.doi.org/10.2196/jmir.1157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19329408&dopt=Abstract
http://www.cdc.gov/nchs/data/databriefs/db94.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22617340&dopt=Abstract
http://www.cdc.gov/nchs/fastats/asthma.htm
http://www.webcitation.org/

                                            6sdJKRPmf
http://www.w3.org/Style/XSL
http://www.renderx.com/


33. Centers for Disease Control and Prevention. Most recent asthma data URL: http://www.cdc.gov/asthma/most_recent_data.
htm[WebCite Cache ID 6sdJSHspd]

34. Asthma and African Americans.: US Department of Health and Human Services URL: https://minorityhealth.hhs.gov/omh/
browse.aspx?lvl=4&lvlid=15 [accessed 2018-02-21] [WebCite Cache ID 6xP2qadGK]

35. Global Initiative for Asthma. 2017 Pocket guide for asthma management and prevention URL: http://ginasthma.org/
download/520/[WebCite Cache ID 6xFIlR1Ry]

36. Johnston NW, Sears MR. Asthma exacerbations: epidemiology. Thorax 2006 Aug;61(8):722-728 [FREE Full text] [doi:
10.1136/thx.2005.045161] [Medline: 16877691]

37. Larsen K, Zhu J, Feldman LY, Simatovic J, Dell S, Gershon AS, et al. The annual September peak in asthma exacerbation
rates. Still a reality? Ann Am Thorac Soc 2016 Feb;13(2):231-239. [doi: 10.1513/AnnalsATS.201508-545OC] [Medline:
26636481]

38. Gerhardsson DVM, Gustafson P, McCrae C, Edsbäcker S, Johnston N. Seasonal and geographic variations in the incidence
of asthma exacerbations in the United States. J Asthma 2017 Oct;54(8):818-824. [doi: 10.1080/02770903.2016.1277538]
[Medline: 28102717]

39. Gillisen A. Patient's adherence in asthma. J Physiol Pharmacol 2007 Nov;58 Suppl 5(Pt 1):205-222 [FREE Full text]
[Medline: 18204131]

40. Axtell S, Haines S, Fairclough J. Effectiveness of various methods of teaching proper inhaler technique. J Pharm Pract
2017 Apr;30(2):195-201. [doi: 10.1177/0897190016628961] [Medline: 26912531]

41. Pinnock H. Supported self-management for asthma. Breathe (Sheff) 2015 Jun;11(2):98-109 [FREE Full text] [doi:
10.1183/20734735.015614] [Medline: 26306110]

42. Winer RA, Qin X, Harrington T, Moorman J, Zahran H. Asthma incidence among children and adults: findings from the
Behavioral Risk Factor Surveillance system asthma call-back survey—United States, 2006-2008. J Asthma 2012
Feb;49(1):16-22. [doi: 10.3109/02770903.2011.637594] [Medline: 22236442]

43. Centers for Disease Control and Prevention. Vital Signs: Asthma in the US URL: http://www.cdc.gov/vitalsigns/asthma/
[WebCite Cache ID 6sdJfBsTX]

44. McCallum M, Bury G. Public interest in the environment is falling: a response to Ficetola (2013). Biodivers Conserv 2014
Feb 14;23(4):1057-1062. [doi: 10.1007/s10531-014-0640-7]

45. Jun S, Park D. Consumer information search behavior and purchasing decisions: empirical evidence from Korea. Technol
Forecast Soc Change 2016 Jun;107:97-111. [doi: 10.1016/j.techfore.2016.03.021]

46. Han S, Chung H, Kang B. It is time to prepare for the future: forecasting social trends. In: Computer Applications for
Database, Education, and Ubiquitous Computing. Berlin: Springer; 2012:325-331.

47. Scharkow M, Vogelgesang J. Measuring the public agenda using search engine queries. Int J Public Opin Res 2011 Mar
01;23(1):104-113. [doi: 10.1093/ijpor/edq048]

48. How Trends data is adjusted. URL: https://support.google.com/trends/answer/4365533?hl=en [accessed 2017-08-11]
[WebCite Cache ID 6sdJp7avA]

49. Hyndman R, Athanasopoulos G. Forecasting Principles and Practice. 2014. URL: https://www.otexts.org/fpp [accessed
2018-02-15] [WebCite Cache ID 6xFJlXCQI]

50. Centers for Disease Control and Prevention. 2015. National Health Interview Survey (NHIS) Data: 2015 lifetime asthma,
current asthma, asthma attacks among those with current asthma URL: https://www.cdc.gov/asthma/nhis/2015/data.
htm[WebCite Cache ID 6sdJhJx5r]

51. Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System (BRFSS) prevalence data: asthma
URL: https://www.cdc.gov/asthma/brfss/default.htm[WebCite Cache ID 6sdJl5fpw]

52. Centers for Disease Control and Prevention. Surveillance Case Definitions URL: https://wwwn.cdc.gov/nndss/conditions/
[WebCite Cache ID 6wPl4S6NQ]

53. Centers for Disease Control and Prevention. Breathing easier URL: https://www.cdc.gov/asthma/pdfs/
breathing_easier_brochure.pdf[WebCite Cache ID 6u57QQ7tx]

54. Centers for Disease Control and Prevention. Data and Surveillance: asthma URL: https://www.cdc.gov/asthma/tables_graphs.
htm[WebCite Cache ID 6wPlB6D40]

55. Centers for Disease Control and Prevention. Trends in asthma prevalence, health care use, and mortality in the United
States, 2001-2010 URL: https://www.cdc.gov/nchs/data/databriefs/db94.pdf[WebCite Cache ID 6xFKYZQio]

56. Samaras L, García-Barriocanal E, Sicilia M. Syndromic surveillance models using Web data: the case of influenza in Greece
and Italy using Google Trends. JMIR Public Health Surveill 2017 Nov 20;3(4):e90 [FREE Full text] [doi:
10.2196/publichealth.8015] [Medline: 29158208]

57. Kagashe I, Yan Z, Suheryani I. Enhancing seasonal influenza surveillance: topic analysis of widely used medicinal drugs
using Twitter data. J Med Internet Res 2017 Sep 12;19(9):e315 [FREE Full text] [doi: 10.2196/jmir.7393] [Medline:
28899847]

58. Pesälä S, Virtanen MJ, Sane J, Mustonen P, Kaila M, Helve O. Health information-seeking patterns of the general public
and indications for disease surveillance: register-based study using Lyme disease. JMIR Public Health Surveill 2017 Nov
06;3(4):e86 [FREE Full text] [doi: 10.2196/publichealth.8306] [Medline: 29109071]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 15http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.cdc.gov/asthma/most_recent_data.htm
http://www.cdc.gov/asthma/most_recent_data.htm
http://www.webcitation.org/

                                            6sdJSHspd
https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=15
https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=15
http://www.webcitation.org/

                                            6xP2qadGK
http://ginasthma.org/download/520/
http://ginasthma.org/download/520/
http://www.webcitation.org/

                                            6xFIlR1Ry
http://europepmc.org/abstract/MED/16877691
http://dx.doi.org/10.1136/thx.2005.045161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16877691&dopt=Abstract
http://dx.doi.org/10.1513/AnnalsATS.201508-545OC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26636481&dopt=Abstract
http://dx.doi.org/10.1080/02770903.2016.1277538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28102717&dopt=Abstract
http://www.jpp.krakow.pl/journal/archive/11_07_s5/pdf/205_11_07_s5_article.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18204131&dopt=Abstract
http://dx.doi.org/10.1177/0897190016628961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26912531&dopt=Abstract
http://europepmc.org/abstract/MED/26306110
http://dx.doi.org/10.1183/20734735.015614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26306110&dopt=Abstract
http://dx.doi.org/10.3109/02770903.2011.637594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22236442&dopt=Abstract
http://www.cdc.gov/vitalsigns/asthma/
http://www.webcitation.org/

                                            6sdJfBsTX
http://dx.doi.org/10.1007/s10531-014-0640-7
http://dx.doi.org/10.1016/j.techfore.2016.03.021
http://dx.doi.org/10.1093/ijpor/edq048
https://support.google.com/trends/answer/4365533?hl=en
http://www.webcitation.org/

                                            6sdJp7avA
https://www.otexts.org/fpp
http://www.webcitation.org/

                                            6xFJlXCQI
https://www.cdc.gov/asthma/nhis/2015/data.htm
https://www.cdc.gov/asthma/nhis/2015/data.htm
http://www.webcitation.org/

                                            6sdJhJx5r
https://www.cdc.gov/asthma/brfss/default.htm
http://www.webcitation.org/

                                            6sdJl5fpw
https://wwwn.cdc.gov/nndss/conditions/
http://www.webcitation.org/

                                            6wPl4S6NQ
https://www.cdc.gov/asthma/pdfs/breathing_easier_brochure.pdf
https://www.cdc.gov/asthma/pdfs/breathing_easier_brochure.pdf
http://www.webcitation.org/

                                            6u57QQ7tx
https://www.cdc.gov/asthma/tables_graphs.htm
https://www.cdc.gov/asthma/tables_graphs.htm
http://www.webcitation.org/

                                            6wPlB6D40
https://www.cdc.gov/nchs/data/databriefs/db94.pdf
http://www.webcitation.org/

                                            6xFKYZQio
http://publichealth.jmir.org/2017/4/e90/
http://dx.doi.org/10.2196/publichealth.8015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29158208&dopt=Abstract
http://www.jmir.org/2017/9/e315/
http://dx.doi.org/10.2196/jmir.7393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28899847&dopt=Abstract
http://publichealth.jmir.org/2017/4/e86/
http://dx.doi.org/10.2196/publichealth.8306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29109071&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


59. Liu K, Huang S, Miao Z, Chen B, Jiang T, Cai G, et al. Identifying potential norovirus epidemics in China via Internet
surveillance. J Med Internet Res 2017 Aug 08;19(8):e282 [FREE Full text] [doi: 10.2196/jmir.7855] [Medline: 28790023]

60. Mavragani A, Tsagarakis K. YES or NO: predicting the 2015 GReferendum results using Google Trends. Technol Forecast
Soc Change 2016 Aug;109:1-5. [doi: 10.1016/j.techfore.2016.04.028]

61. Ayers JW, Althouse BM, Dredze M. Could behavioral medicine lead the web data revolution? JAMA 2014 Apr
9;311(14):1399-1400. [doi: 10.1001/jama.2014.1505] [Medline: 24577162]

62. Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014
Mar 14;343(6176):1203-1205. [doi: 10.1126/science.1248506] [Medline: 24626916]

Abbreviations
BRFSS: Behavioral Risk Factor Surveillance System
CDC: Centers for Disease Control and Prevention
NHIS: National Health Interview Survey

Edited by G Eysenbach; submitted 11.08.17; peer-reviewed by N Bragazzi, Z Zhang, A Zheluk; comments to author 21.09.17; revised
version received 15.10.17; accepted 13.01.18; published 12.03.18

Please cite as:
Mavragani A, Sampri A, Sypsa K, Tsagarakis KP
Integrating Smart Health in the US Health Care System: Infodemiology Study of Asthma Monitoring in the Google Era
JMIR Public Health Surveill 2018;4(1):e24
URL: http://publichealth.jmir.org/2018/1/e24/
doi: 10.2196/publichealth.8726
PMID: 29530839

©Amaryllis Mavragani, Alexia Sampri, Karla Sypsa, Konstantinos P Tsagarakis. Originally published in JMIR Public Health
and Surveillance (http://publichealth.jmir.org), 12.03.2018. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly
cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this
copyright and license information must be included.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 1 | e24 | p. 16http://publichealth.jmir.org/2018/1/e24/
(page number not for citation purposes)

Mavragani et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.jmir.org/2017/8/e282/
http://dx.doi.org/10.2196/jmir.7855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28790023&dopt=Abstract
http://dx.doi.org/10.1016/j.techfore.2016.04.028
http://dx.doi.org/10.1001/jama.2014.1505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24577162&dopt=Abstract
http://dx.doi.org/10.1126/science.1248506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24626916&dopt=Abstract
http://publichealth.jmir.org/2018/1/e24/
http://dx.doi.org/10.2196/publichealth.8726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29530839&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

