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Abstract

Background: Approximately 40 countries in Central and South America have experienced local vector-born transmission of
Zika virus, resulting in nearly 300,000 total reported cases of Zika virus disease to date. Of the cases that have sought care thus
far in the region, more than 70,000 have been reported out of Colombia.

Objective: In this paper, we use nontraditional digital disease surveillance data via HealthMap and Google Trends to develop
near real-time estimates for the basic (R0) and observed (Robs) reproductive numbers associated with Zika virus disease in Colombia.
We then validate our results against traditional health care-based disease surveillance data.

Methods: Cumulative reported case counts of Zika virus disease in Colombia were acquired via the HealthMap digital disease
surveillance system. Linear smoothing was conducted to adjust the shape of the HealthMap cumulative case curve using Google
search data. Traditional surveillance data on Zika virus disease were obtained from weekly Instituto Nacional de Salud (INS)
epidemiological bulletin publications. The Incidence Decay and Exponential Adjustment (IDEA) model was used to estimate R0

and Robs for both data sources.

Results: Using the digital (smoothed HealthMap) data, we estimated a mean R0 of 2.56 (range 1.42-3.83) and a mean Robs of
1.80 (range 1.42-2.30). The traditional (INS) data yielded a mean R0 of 4.82 (range 2.34-8.32) and a mean Robs of 2.34 (range
1.60-3.31).

Conclusions: Although modeling using the traditional (INS) data yielded higher R0 estimates than the digital (smoothed
HealthMap) data, modeled ranges for Robs were comparable across both data sources. As a result, the narrow range of possible
case projections generated by the traditional (INS) data was largely encompassed by the wider range produced by the digital
(smoothed HealthMap) data. Thus, in the absence of traditional surveillance data, digital surveillance data can yield similar
estimates for key transmission parameters and should be utilized in other Zika virus-affected countries to assess outbreak dynamics
in near real time.
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Introduction

Recent infectious disease outbreaks—including severe acute
respiratory syndrome (SARS), Middle East respiratory syndrome
(MERS), Ebola, and influenza A (H1N1)—have presented great
challenges to the global public health community, including
lack of basic epidemiologic knowledge to support important
preparedness and control decisions. To address this gap,
innovative surveillance methods have been developed over the
last several years to leverage the increasing availability of digital
data related to outbreaks. To date, many studies have
retrospectively examined nontraditional digital data sources and
have demonstrated their utility in estimating epidemic curves
or changes in important epidemiologic parameters over time
[1-3]. Such studies have provided a foundation for building near
real-time prospective analytic techniques that can assess
transmission dynamics in the absence of traditional data. These
methodological developments fill a knowledge vacuum that
may prove useful for public health decision making in the early
stages of an outbreak.

The ongoing outbreak of Zika virus disease in Central and South
America has attracted global attention due to its rapid geospatial
growth as well as concerns over associated central nervous
system complications [4,5]. Although Zika virus is primarily
transmitted via Aedes mosquitoes, evidence of vertical and
sexual transmission exists [6-8]. Likely introduced to the
Americas in mid- to late 2013, the virus has since been
propagated by the density of competent vectors throughout the
region [8]. At present, approximately 40 countries in Central
and South America have experienced local vector-borne
transmission, resulting in nearly 300,000 total reported cases
to date [9]. Of the cases that have sought care thus far in the
region, about 70,000 have been reported out of Colombia, of
which 17% were pregnant at time of clinical or laboratory
diagnosis [9,10]. However, given the generally mild nature of
Zika virus disease and subsequent lack of care seeking, reported
cases undoubtedly comprise a small fraction of total cases
[11,12].

Current prevention efforts focus on vector suppression [13],
while interest in and efforts toward vaccine development are
mounting rapidly due to increasing rates of Guillain-Barré
syndrome following Zika virus infection and microcephaly in
newborn babies born to women infected with Zika virus while
pregnant [4,5]. Quantitative analyses designed to inform vaccine
policies—in addition to other preparedness and control
activities—are dependent on the transmission dynamics
associated with the disease and, therefore, estimates for critical
epidemiologic parameters are urgently needed for such decision
making within the context of Zika virus disease.

In this paper, we use nontraditional digital disease surveillance
data via HealthMap and Google Trends to develop near real-time
estimates for the basic and observed reproductive numbers

associated with Zika virus disease in Colombia as well as
expected final outbreak size and duration. We then validate our
results against traditional health care-based disease surveillance
data and discuss the implications of our work on outbreak
mitigation strategies in Colombia and assessment of transmission
dynamics elsewhere in the region.

Methods

Cumulative reported case counts of Zika virus disease in
Colombia were acquired via the HealthMap digital disease
surveillance system, consisting of 28 unique nongovernmental
media alerts between October 16, 2015 and April 16, 2016 [14].
The cumulative reported case curve obtained from these reports
shows an unrealistic L-shape, presumably due to increased
interest in reporting during recent weeks and lack of awareness
during early weeks (Figure 1). By assuming that the total number
of cases obtained from HealthMap was a reasonable
approximation of reality for the given time period, we used
Google search data to distribute cumulative reported case counts
more realistically over time.

Although many cases of dengue and influenza go undetected,
previous studies have shown that relevant Google search trends
demonstrate high linear correlation with reported disease
incidence over time [15,16]. Thus, we obtained weekly Google
search fractions of the term “Zika” from Colombia via the
Google Trends website (accessed on April 29, 2016). These
search fractions are displayed weekly as normalized values that
range from zero to 100, which reflect the level of nationwide
search interest in the word “Zika” from January 4, 2004 (first
available datum) to April 16, 2016.

We created a smoothed cumulative incidence curve (referred
to as “smoothed HealthMap”) by scaling the Google search
curve against the HealthMap-reported Zika cases [17]. The
scaling constant was obtained by dividing the most recent total
number of HealthMap-reported Zika cases by the total number
of Google search fractions from May 31, 2015 to April 16, 2016.
Perhaps due to initial delays in reporting, the first relevant uptick
of the term “Zika” in the Google Trends data occurred during
the week of May 31, 2015, approximately 20 weeks before the
first HealthMap alert of Zika virus disease in Colombia. Because
of this, May 31, 2015 was selected as the start date for modeling
efforts using smoothed HealthMap data; April 16, 2016 (last
available datum at time of manuscript preparation) was selected
as the cut-off date.

Due to successful applications in other data-scarce (ie,
cumulative incidence only) settings, the Incidence Decay and
Exponential Adjustment (IDEA) model was used to estimate
the basic reproductive number (R0) and the discount factor (d)
associated with the ongoing outbreak [2,18,19]. Both R0 and d
were solved for using nonlinear optimization to minimize the
sum of squared differences (SSD) between reported
(user-inputted) and modeled cumulative incidence (I) curves
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across multiple serial intervals (ie, outbreak generations). Figure
2 presents a formulation for I expressed in terms of R0 and d,
where t is the number of outbreak generations (ie, serial
intervals) that have passed thus far and is inversely proportional
to the serial interval length (ie, number of days per serial interval
[SI]). Given that distribution for the SI associated with Zika
virus disease had not yet been established, R0 and d were solved
for iteratively over a range of 14 deterministic lengths (10-23
days) [20].

These values of R0 and d were then used to define maximum,
minimum, and mean values for the observed reproductive
number (Robs), final reported outbreak size (Imax), and final
reported duration (tmax).The observed number of secondary
infections per infected individual for a given value of t (Robs)

was calculated using the following equation: Robs = R0/(1+ d)t.

When d is greater than zero, R0 does not equal Robs. In such
circumstances, disease incidence is nonexponential due to either
planned or unplanned reductions in disease duration, contact
rate, or infectiousness of cases [18]. Likewise, final reported
outbreak duration (tmax) was calculated as follows [18]:
tmax≥ln(R0)/ln(1+ d).

Final reported outbreak duration can also be expressed in days
by multiplying tmax by SI; however, in calculating Imax, original
units (ie, outbreak generations) are used (Figure 3).

In the event that a viable vaccine is developed before the
ongoing outbreak in Colombia ends (tmax), the following
equation was used to assess the percentage of the susceptible
population that would need to be immunized against Zika virus
(%Vax) to eliminate transmission, assuming 100% vaccine
efficacy: %Vax=1–(1/ Robs).

After completion of the analyses on the digital surveillance data,
we performed a validation study using traditional surveillance
data obtained from weekly Instituto Nacional de Salud (INS)
(National Institute of Health, Colombia) epidemiological bulletin
publications [21]. The INS first reported incidence of Zika virus
disease in Colombia on October 16, 2015. However, subsequent
publications indicated that the outbreak likely began during
epidemiologic week 32 of 2015 or earlier [22]. As result, August
22, 2015 was selected as a start date for modeling efforts using
INS data. April 16, 2016 (date of the most recent publication
at time of manuscript preparation) was selected as the cut-off
date [22]. The analyses described previously for the smoothed
HealthMap dataset were conducted on the INS dataset as well,
resulting in R0, d, Robs, Imax, tmax, and %Vax estimates for both
digital (smoothed HealthMap) and traditional (INS) cumulative
reported case data.

Figure 1. Cumulative case curve of Zika virus disease in Colombia as captured by the HealthMap digital disease surveillance system. Linear smoothing
was conducted to adjust the shape of HealthMap cumulative case curve using Google search data.
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Figure 2. Cumulative incidence (I) expressed in terms of R0 and d.

Figure 3. Final reported outbreak size (Imax) expressed in terms of R0 and d.

Results

Example model fits for both digital (smoothed HealthMap;

SSD=1.47×108) and traditional (INS; SSD=1.55×107)
cumulative case data are shown in Figures 4 and 5 (SI=17 days).

In general, the traditional data model fits (mean SSD=1.76×107)
were superior to those derived from digital data (mean

SSD=1.64×108).

Using the digital (smoothed HealthMap) cumulative case counts,
we estimated a mean R0 of 3.26 (range 1.91-5.05) and a mean
d of 0.04 (range 0.01-0.07) across 14 deterministic serial interval
lengths (range 10-23 days) (Figure 6). We then calculated a
mean Robs of 1.63 (range 1.31-2.05), a mean Imax of 85,546 cases
(range 80,028-93,885 cases), and a mean tmax of 530 days (range
522-538 days; November 2016). Cumulative reported case
projections using these modeled parameters are shown in Figure
7.

The traditional (INS) data yielded a mean R0 of 5.36 (range
2.52-9.63) and a mean d of 0.07 (range 0.02-0.14) across 14
deterministic serial interval lengths (range 10-23 days) (Figure
8). Using these, we calculated a mean Robs of 1.96 (range
1.45-2.58), a mean Imax of 77,386 cases (range 76,587-78,619
cases), and a mean tmax of 387 days (range 382-392 days;
September 2016). Cumulative reported case projections using
these modeled parameters are shown in Figure 9.

Although R0 values calculated using the traditional (INS) data
were general higher than those calculated using digital
(smoothed HealthMap) cumulative case counts (SSD=82.14),
Robs values were quite similar across data sources (SSD=1.84).
As a result, the digital (smoothed HealthMap) and traditional
(INS) cumulative case data produced similar mean %Vax values
of 0.39 (range 0.24-0.51) and 0.49 (range 0.31-0.61),
respectively.

Figure 4. IDEA model fits against smoothed HealthMap cumulative case data for Zika virus disease in Colombia. A serial interval length of 17 days
was used.
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Figure 5. IDEA model fits against Instituto Nacional de Salud (INS) cumulative case data for Zika virus disease in Colombia. A serial interval length
of 17 days was used.

Figure 6. Modeled values for basic reproductive number (R0), discount factor (d), and observed reproductive number (Robs) using smoothed HealthMap
cumulative case data. A total of 14 deterministic serial interval lengths were used; modeled values for each parameter are shown across all 14 serial
interval lengths.
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Figure 7. Cumulative case count projections using smoothed HealthMap cumulative case data. Projected minimum, maximum, and mean cumulative
case counts are shown.

Figure 8. Modeled values for basic reproductive number (R0), discount factor (d), and observed reproductive number (Robs) using Instituto Nacional
de Salud (INS) cumulative case data. A total of 14 deterministic serial interval lengths were used; modeled values for each parameter are shown across
all 14 serial interval lengths.

JMIR Public Health Surveill 2016 | vol. 2 | iss. 1 | e30 | p. 6http://publichealth.jmir.org/2016/1/e30/
(page number not for citation purposes)

Majumder et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Cumulative case count projections using Instituto Nacional de Salud (INS) cumulative case data. Projected minimum, maximum, and mean
cumulative case counts are shown.

Discussion

When depletion of susceptible individuals due to infection (ie,
via death or immunity-conferred recovery) is small relative to
the total population, basic reproductive numbers obtained using
the IDEA model are comparable to simple SIR-type models
[19]. Although they are especially suitable for use in data-scarce
settings, SIR-type models—and, by extension, the IDEA
model—cannot easily incorporate global dynamics, such as the
importation and exportation of infectious agents (ie, vectors
and humans) or significant climate events (ie, El Niño and La
Niña). Nevertheless, others have demonstrated that simple
SIR-type models perform similarly to complex mechanistic
models when describing the transmission dynamics of
vector-borne and water-borne diseases in localized contexts
[23,24]. As a result, the IDEA model is a reasonable method
for analyzing nationwide transmission dynamics of Zika virus
disease in Colombia.

As defined by the IDEA modeling method, R0 represents
potential transmissibility of a given pathogen in a fully
susceptible, naïve population; meanwhile, Robs represents
observed transmission in the face of existing interventions, as
captured by d [2,18,19]. In this sense, the Robs is similar to the
effective reproductive number (Rt), which represents
transmissibility in a population that is not fully susceptible.
Mean modeled estimates for R0 across both data sources were
consistent with R0 estimates for Zika virus disease in French
Polynesia and with R0 estimates for chikungunya and dengue
[12,25,26]. Mean modeled estimates for Robs were also
comparable to Rt estimates for chikungunya and dengue [27,28].
To take into account the effects of ongoing transmission control
efforts, Robs was used instead of R0 to calculate %Vax.

In this study, we found that using the traditional (INS) data
yielded higher R0 estimates than the digital (smoothed
HealthMap) cumulative reported case counts. Nevertheless,
because estimates for d were also higher, modeled ranges for
Robs and %Vax were comparable across both data sources.
Similarly, the narrow range of possible case projections
generated by the traditional (INS) data was largely encompassed
by the wider range produced by the digital (smoothed
HealthMap) cumulative reported case counts. Therefore, in the
absence of traditional health care-based surveillance data,
important epidemiologic parameters may be estimated using
smoothed digital surveillance data as described here.

The methods used in this study are not without limitations. For
both data sources, estimates for country-level case projections
and Imax apply only to those that seek care; true caseloads are
likely to be as much as five times higher than those that are
reported [11,12]. Furthermore, because country-level data are
utilized, in-country transmission heterogeneities are not
captured. As geographic granularity of digital surveillance data
improves, similar analyses should be conducted at smaller
scales. Nevertheless, given that projection models are designed
to serve as decision-support tools, estimating the number of
cases that will report to hospitals and clinics over the next
several months—even at the country level—is still valuable for
the purposes of resource allocation. This may be especially
pertinent with respect to diagnostic support for pregnant women
presenting with clinical symptoms for Zika virus disease. To
date, nearly 20% of all reported Zika virus disease cases in
Colombia have been pregnant women; if the current rate holds,
thousands more may be infected and seek care before the
outbreak ends. However, the projections presented in this paper
only apply in the event that circumstances remain unchanged
(eg, no new interventions are put in place).

JMIR Public Health Surveill 2016 | vol. 2 | iss. 1 | e30 | p. 7http://publichealth.jmir.org/2016/1/e30/
(page number not for citation purposes)

Majumder et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


With improved compliance, vector suppression interventions
(eg, elimination of standing water, exhaustive use of insect
repellant) have the potential to bring this outbreak to a swift
close, even in the absence of a vaccine. In the event that a viable
vaccine can be developed before the outbreak ends, our
estimates suggest that approximately half of the susceptible
population would need to be immunized to confer herd
immunity. Considering the growing body of evidence linking
Zika virus infection during pregnancy to microcephaly in
newborn babies, women of childbearing age should be given
priority if the option becomes available [4,5].

Regardless of whether a vaccine reaches the market before the
outbreak in Colombia ends, the data acquisition and modeling
approach presented in this paper may still benefit other
Zika-affected countries with limited capacity for
government-implemented health care-based data collection.
Although traditional surveillance data should be used
preferentially, in its absence digital surveillance data can yield
comparable estimates for key transmission parameters. It has
been shown that digital surveillance data can be used
retrospectively to assess transmission dynamics of

well-understood pathogens (eg, Vibrio cholerae); however, our
findings suggest that similar analyses can also be conducted in
near real time for emerging infectious diseases [3]. Moreover,
the epidemiologic parameters estimates from these analyses
may be readily updated as new information emerges, enabling
prospective tracking of transmission dynamics at the country
level despite data scarcity.

Recent history has shown the need for rapid epidemiologic
assessments to better inform intervention strategies in the face
of a public health emergency. For effective evaluation of such
interventions, baseline estimates for transmissibility—like those
described in this study—must be established. Furthermore,
changes in outbreak dynamics must be closely monitored in
order to assess the impact of active interventions on disease
transmission. Our approach offers an important alternative to
guesswork based loosely on related diseases and previous
outbreaks. Given the absence of traditional surveillance data
and transmission heterogeneities across Central and South
America, digital surveillance data can and should be used to
conduct similar analyses for other Zika-affected countries in
the months ahead.
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Rt: effective reproductive number
SARS: severe acute respiratory syndrome
SI: serial interval length
SSD: sum of squared differences
tmax: final reported outbreak duration
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